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Preface

This book is based on the lecture notes of the course on black hole astrophysics
given at the University of La Plata, Argentina, by one of us (GER). The material
aims at advanced undergraduate and graduate students with interest in astrophysics.
The course takes one semester and is usually complemented by a course on high-
energy astrophysics. The material included goes beyond what is found in classic
textbooks like that by Shapiro and Teukolsky and is focused exclusively on black
holes. We do not consider applications to other compact objects, such as neutron
stars and white dwarfs. Instead, we provide more details on astrophysical manifes-
tations of black holes. In particular, we include abundant material on jet physics and
accounts of objects such as microquasars, active galactic nuclei, gamma-ray bursts,
and ultraluminous X-ray sources. Other topics, normally not covered in introductory
texts, like black holes in alternative theories of gravity, are discussed since we have
found that they are highly stimulating for the students. Obviously, in a book of this
kind, completeness is not possible, and some selection criterion must be applied to
the material. Ours has been quite personal: we selected the topics on which GER
has been working for around 20 years now, and we think that these topics form the
core and starting point for basic research in this fascinating area of astrophysics.

In writing the book, we tried to avoid unnecessary technicalities, and to some
degree the book is self-contained. Some previous knowledge of General Relativity
would be desirable, but the reader will find the basic tools in Chap. 1. The appen-
dices provide some additional mathematical details that will be useful to pursue the
study and a guide to the bibliography on the subject.

Gustavo E. Romero
Gabriela S. Vila

La Plata
May 2013
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Chapter 1
Space-Time and Gravitation

1.1 Space-Time

Strictly speaking, black holes do not exist. Moreover, holes, of any kind, do not
exist. You can talk about holes of course. For instance you can say: “there is a hole
in the wall”. You can give many details of the hole: it is big, it is round-shaped, light
comes in through it. Even, perhaps, the hole could be such that you can go through
it to the outside. But we are sure that you do not think that there is a thing made out
of nothingness in the wall. Certainly not. To talk about the hole is an indirect way of
talking about the wall. What really exists is the wall. The wall is made out of bricks,
atoms, protons and leptons, whatever. To say that there is a hole in the wall is just to
say that the wall has certain topology, a topology such that not every closed curve
on the surface of the wall can be continuously contracted to a single point. The hole
is not a thing. The hole is a property of the wall.

Let us come back to black holes. What are we talking about when we talk about
black holes? Space-time. What is space-time?

Space-time is the ontological sum of all events of all things.

A thing is an individual endowed with physical properties. An event is a change
in the properties of a thing. An ontological sum is an aggregation of things or phys-
ical properties, i.e. a physical entity or an emergent property. An ontological sum
should not be confused with a set, which is a mathematical construct and has only
mathematical (i.e. fictional) properties.

Everything that has happened, everything that happens, everything that will hap-
pen, is just an element, a “point”, of space-time. Space-time is not a thing, it is just
the relational property of all things.1

As seems to happen with every physical property, we can represent space-time
with some mathematical structure, in order to describe it. We shall adopt the follow-
ing mathematical structure for space-time:

1For more details on this view see Perez-Bergliaffa et al. (1998) and Romero (2013).

G.E. Romero, G.S. Vila, Introduction to Black Hole Astrophysics,
Lecture Notes in Physics 876, DOI 10.1007/978-3-642-39596-3_1,
© Springer-Verlag Berlin Heidelberg 2014

1

http://dx.doi.org/10.1007/978-3-642-39596-3_1
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Space-time can be represented by a C∞-differentiable, 4-dimensional, real manifold.

A real 4-D manifold2 is a set that can be covered completely by subsets whose
elements are in a one-to-one correspondence with subsets of �4, the 4-dimensional
space of real numbers. Each element of the manifold represents an event. We adopt
4 dimensions because it seems enough to give 4 real numbers to localize an event.
For instance, a lightning has beaten the top of the building at 25 m above the sea
level, located in the 38th Av., between streets 20 and 21, La Plata city, at 4:35 am,
local time, March 22nd, 2012 (this is Romero’s home at the time of writing). We
see now why we choose a manifold to represent space-time: we can always provide
a set of 4 real numbers for every event, and this can be done independently of the
intrinsic geometry of the manifold. If there is more than a single characterization of
an event, we can always find a transformation law between the different coordinate
systems of each characterization. This is a basic property of manifolds.

Now, if we want to calculate distances between two events, we need more struc-
ture on our manifold: we need a geometric structure. We can get this introducing a
metric tensor that allows to calculate distances. For instance, consider an Euclidean
metric tensor δμν (indices run from 0 to 3):

δμν =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (1.1)

Then, adopting the Einstein convention of sum, we have that the distance ds be-
tween two arbitrarily close events is:

ds2 = δμνdxμdxν =
(
dx0)2 + (

dx1)2 + (
dx3)2 + (

dx3)2
. (1.2)

Restricted to 3 coordinates, this is the way distances have been calculated since
Pythagoras. The world, however, seems to be a little more complicated. After the in-
troduction of the Special Theory of Relativity by Einstein (1905), the German math-
ematician Hermann Minkowski introduced the following pseudo-Euclidean metric
which is consistent with Einstein’s theory (Minkowski 1907, 1909):

ds2 = ημνdxμdxν =
(
dx0)2 − (

dx1)2 − (
dx3)2 − (

dx3)2
. (1.3)

The Minkowski metric tensor ημν has rank 2 and trace −2. We call the coor-
dinates with the same sign spatial coordinates (adopting the convention x1 = x,
x2 = y, and x3 = z) and the coordinate x0 = ct is called temporal coordinate. The
constant c is introduced to make the units uniform.

There is an important fact about Eq. (1.3): contrary to what was thought by Kant
and others, it is not a necessary statement. Things might have been different. We can

2See Appendix A.
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Fig. 1.1 Light cone. From J-P. Luminet (1998)

easily imagine possible worlds with other metrics. This means that the metric tensor
has empirical information about the real universe.

Once we have introduced a metric tensor we can separate space-time at each
point in three regions according to ds2 < 0 (space-like region), ds2 = 0 (light-like
or null region), and ds2 > 0 (time-like region). Particles that go through the origin
can only reach time-like regions. The null surface ds2 = 0 can be inhabited only by
particles moving at the speed of light, like photons. Points in the space-like region
cannot be reached by material objects from the origin of the light cone that can be
formed at any space-time point. A light cone is shown in Fig. 1.1.

The introduction of the metric allows to define the future and the past of a given
event. Once this is done, all events can be classified by the relation “earlier than” or
“later than”. The selection of a “present” event - or “now” - is entirely conventional.
To be present is not an intrinsic property of any event. Rather, it is a secondary,
relational property that requires interaction with a conscious being. The extinction
of the dinosaurs will always be earlier than the beginning of World War II. But the
latter was present only to some human beings at some physical state. The present is
a property like a scent or a color. It emerges from the interaction of self-conscious
individuals with changing things and has not existence independently of them (for
more about this, see Grünbaum 1973 Chap. X, and Romero 2012).

Let us consider the unitary vector T ν = (1, 0, 0, 0). A vector xμ points to
the future if ημνxμT ν > 0. In a similar way, the vector points towards the past if
ημνx

μT ν < 0.
We define the proper time τ of a physical system as the time of a co-moving

system, i.e. dx = dy = dz= 0, and hence:

dτ 2 = 1

c2
ds2. (1.4)

Since the interval is an invariant (i.e. it has the same value in all coordinate systems),
it is easy to show that

dτ = dt
γ
, (1.5)
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where

γ = 1√
1− ( v

c
)2

(1.6)

is the Lorentz factor of the system.
A basic characteristic of Minskowski space-time is that it is “flat”: all light cones

point in the same direction, i.e. the local direction of the future does not depend on
the coefficients of the metric since these are constant. More general space-times are
possible. If we want to describe gravity in the framework of space-time, we have
to introduce a pseudo-Riemannian space-time, whose metric can be flexible, i.e. a
function of the material properties (mass-energy and momentum) of the physical
systems that produce the events of space-time.

1.2 Tetrads: Orthogonal Unit Vector Fields

Let us consider a scalar product

v •w= (
vμêμ

) • (wνêν
)= (êμ • êν)vμwν = gμνvμwν,

where

êμ = lim
δxμ→0

δs
δxμ

,

and we have defined

êμ(x) • êν(x)= gμν(x).
Similarly,

êμ(x) • êν(x)= gμν(x).
We call êμ a coordinate basis vector or a tetrad. Here δs is an infinitesimal dis-

placement vector between a point P on the manifold (see Fig. 1.2) and a nearby
point Q whose coordinate separation is δxμ along the xμ coordinate curve. êμ is
the tangent vector to the xμ curve at P . We can write

ds= êμdxμ

and then

ds2 = ds • ds= (
dxμêμ

) • (dxνêν
)= (êμ • êν)dxμdxν = gμνdxμdxν.

At any given point P the manifold is flat, so

gμν(P )= ημν.
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Fig. 1.2 Tangent flat space at
a point P of a curved manifold

A manifold with such a property is called pseudo-Riemannian. If gμν(P )= δμν the
manifold is called strictly Riemannian.

The basis is called orthonormal when êμ • êν = ημν at any given point P . Notice
that since the tetrads are 4-dimensional we can write

eμa(x)e
a
ν (x)= gμν(x),

and

eμa(P )e
a
ν (P )= ημν.

The tetrads can vary along a given world-line, but always satisfying

eμa(τ )e
a
ν (τ )= ημν.

We can also express the scalar product v •w in the following ways:

v •w = (
vμê

μ
) • (wνêν

)= (
êμ • êν)vμwν = gμνvμwν,

v •w = (
vμêμ

) • (wνêν
)= (

êμ • êν
)
vμwν = vμwνδνμ = vμwμ

and

v •w= (
vμê

μ
) • (wνêν

)= (
êμ • êν

)
vμw

ν = δμν vμwν = vμwμ.
By comparing these expressions for the scalar product of two vectors we see that

gμνw
ν =wμ,

so the quantities gμν can be used to lower and raise indices. Similarly,

gμνwν =wμ.
We also have that

gμνw
νgμνwν = gμνgμνwνwν =wμwμ.

From here it follows

gμνgμσ = δνσ .
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The tensor field gμν(x) is called the metric tensor of the manifold. Alternative,
the metric of the manifold can be specified by the tetrads eaμ(x).

1.3 Gravitation

The key to relate space-time to gravitation is the equivalence principle introduced
by Einstein (1907):

At every space-time point in an arbitrary gravitational field it is possible to choose a locally
inertial coordinate system such that, within a sufficiently small region of the point in ques-
tion, the laws of nature take the same form as in unaccelerated Cartesian coordinate systems
in absence of gravitation (formulation by Weinberg 1972).

This is equivalent to state that at every point P of the manifold that represents
space-time there is a flat tangent surface. Einstein called the idea that gravitation
vanishes in free-falling systems “the happiest thought of my life” (Pais 1982).

In order to introduce gravitation in a general space-time we define a metric tensor
gμν , such that its components can be related to those of a locally Minkowski space-
time defined by ds2 = ηαβdξαdξβ through a general transformation:

ds2 = ηαβ ∂ξ
α

∂xμ

∂ξβ

∂xν
dxμdxν = gμνdxμdxν. (1.7)

In the absence of gravity we can always find a global coordinate system (ξα) for
which the metric takes the form given by Eq. (1.3) everywhere. With gravity, on the
contrary, such a coordinate system can represent space-time only in an infinitesimal
neighborhood of a given point. This situation is represented in Fig. 1.2, where the
tangent flat space to a point P of the manifold is shown. The curvature of space-time
means that it is not possible to find coordinates in which gμν = ημν at all points on
the manifold. However, it is always possible to represent the event (point) P in a
system such that gμν(P )= ημν and (∂gμν/∂xσ )P = 0.

To find the equation of motion of a free particle (i.e. only subject to gravity) in a
general space-time of metric gμν let us consider a freely falling coordinate system
ξα . In such a system

d2ξα

ds2
= 0, (1.8)

where ds2 = (cdτ)2 = ηαβdξαdξβ .
Let us consider now any other coordinate system xμ. Then,

0 = d

ds

(
∂ξα

∂xμ

dxμ

ds

)
, (1.9)

0 = ∂ξα

∂xμ

d2xμ

ds2
+ ∂2ξα

∂xμ∂xν

dxμ

ds

dxν

ds
. (1.10)
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Multiplying both sides by ∂xλ/∂ξα and using

∂ξα

∂xμ

∂xλ

∂ξα
= δλμ, (1.11)

we get

d2xλ

ds2
+ Γ λμν

dxμ

ds

dxν

ds
= 0, (1.12)

where Γ λμν is the affine connection of the manifold:

Γ λμν ≡
∂xλ

∂ξα

∂2ξα

∂xμ∂xν
. (1.13)

The affine connection can be expressed in terms of derivatives of the metric ten-
sor (see, e.g., Weinberg 1972):

Γ λμν =
1

2
gλα(∂μgνα + ∂νgμα − ∂αgμν). (1.14)

Here we have used that gμαgαν = δμν , and the notation ∂νf = ∂f/∂xν . Notice that
under a coordinate transformation from xμ→ x′μ the affine connection is not trans-
formed as a tensor, despite the metric gμν is a tensor of second rank.

The coefficients Γ λμν are said to define a connection on the manifold. What is
connected are the tangent spaces at different points of the manifold, in such a way
that it is possible to connect a vector in the tangent space at point P with the vector
parallel to it at another pointQ. There is some degree of freedom in the specification
of the affine connection, so we demand symmetry in the last two indices:

Γ λμν = Γ λνμ
or

Γ λ[μν] = Γ λμν − Γ λνμ = 0.

In general space-times this requirement is not necessary, and a tensor can be
introduced such that

T λμν = Γ λ[μν]. (1.15)

This tensor represents the torsion of space-time. In General Relativity space-time is
always considered as torsionless, but in the so-called teleparallel theory of gravity
(e.g. Einstein 1928; Arcos and Pereira 2004) torsion represents the gravitational
field instead of curvature, which is nil.

In a pseudo-Riemannian space-time the usual partial derivative is not a mean-
ingful quantity since we can give it different values through different choices of
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coordinates. This can be seen in the way the derivative transforms under a coordi-
nate change. Defining f,ν = ∂νf , we have

A′μ,ν =
∂

∂x′ν

(
∂x′μ

∂xμ
Aμ

)
= ∂x

′μ

∂xμ

∂xν

∂x′ν
Aμ,ν +

∂2x′μ

∂xμ∂xν

∂xν

∂x′ν
Aμ. (1.16)

We can define a covariant differentiation Aμ;ν through the condition of parallel
transport:

Aμ;ν = ∂Aμ
∂xν

− Γ λμνAλ. (1.17)

A useful, alternative notation, is

∇νAμ = ∂Aμ
∂xν

− Γ λμν Aλ. (1.18)

A covariant derivative of a vector field is a rank 2 tensor of type (1, 1). The
covariant divergence of a vector field yields a scalar field:

∇μAμ = ∂μAμ(x)− Γ μαμAα(x)= φ(x). (1.19)

A tangent vector satisfies V νVν;μ = 0. If there is a vector ζμ pointing in the
direction of a symmetry of space-time, then it can be shown that (e.g. Weinberg
1972)

ζμ;ν + ζν;μ = 0, (1.20)

or

∇νζμ +∇μζν = 0. (1.21)

This equation is called Killing’s equation. A vector field ζμ satisfying such a rela-
tion is called a Killing field.

If there is a curve γ on the manifold, such that its tangent vector is uα = dxα/dλ
and a vector field Aα is defined in a neighborhood of γ , we can introduce a deriva-
tive of Aα along γ as

�uA
α =Aα,β uβ − uα,β Aβ =Aα;β uβ − uα;β Aβ. (1.22)

This derivative is a tensor, and it is usually called Lie derivative. It can be defined
for tensors of any type. A Killing vector field is such that

�ζ gμν = 0. (1.23)

From Eq. (1.12) we can recover the classical Newtonian equations if

Γ 0
i,j = 0, Γ i0,j = 0, Γ i0,0 =

∂Φ

∂xi
,
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where i, j = 1,2,3 and Φ is the Newtonian gravitational potential. Then

x0 = ct = cτ,
d2xi

dτ 2
=− ∂Φ

∂xi
.

We see, hence, that the metric represents the gravitational potential and the affine
connection the gravitational field.

The presence of gravity is indicated by the curvature of space-time. The Riemann
tensor, or curvature tensor, provides a measure of this curvature:

Rσμνλ = Γ σμλ,ν − Γ σμν,λ + Γ σανΓ αμλ − Γ σαλΓ αμν. (1.24)

The form of the Riemann tensor for an affine-connected manifold can be obtained
through a coordinate transformation xμ→ xμ that makes the affine connection van-
ish everywhere, i.e.

Γ
σ

μν( x )= 0, ∀x, σ, μ, ν. (1.25)

The coordinate system xμ exists if

Γ σμλ,ν − Γ σμν,λ + Γ σαν Γ αμλ − Γ σαλ Γ αμν = 0 (1.26)

for the affine connection Γ σμν(x). The left hand side of Eq. (1.26) is the Riemann ten-
sor Rσμνλ. In such a case the metric is flat, since its derivatives are zero. If Rσμνλ > 0
the metric has a positive curvature.

The Ricci tensor is defined as

Rμν = gλσRλμσν =Rσμσν. (1.27)

Finally, the Ricci scalar is

R = gμνRμν. (1.28)

1.4 Field Equations

The key issue to determine the geometric structure of space-time, and hence to spec-
ify the effects of gravity, is to find the law that fixes the metric once the source of
the gravitational field is given. The source of the gravitational field is the energy-
momentum tensor Tμν that represents the physical properties of material things.
This was Einstein’s fundamental intuition: the curvature of space-time at any event
is related to the energy-momentum content at that event. For example, for the simple
case of a perfect fluid the energy-momentum tensor takes the form

Tμν = (ρ + P)uμuν − Pgμν, (1.29)
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Fig. 1.3 Albert Einstein
during a lecture in Vienna in
1921, by the Austrian
photographer Ferdinand
Schmutzer. From Wikimedia
Commons, http://commons.
wikimedia.org

where ρ is the mass-energy density, P is the pressure, and uμ = dxμ/ds is the
4-velocity.

The field equations were found by Einstein (1915) and Hilbert (1915) on Novem-
ber 1915.3 We can write Einstein’s physical intuition in the following form:

Kμν = κTμν, (1.30)

where Kμν is a rank-2 tensor related to the curvature of space-time and κ is a con-
stant. Since the curvature is expressed by Rμνσρ , Kμν must be constructed from
this tensor and the metric tensor gμν . The tensor Kμν has to satisfy the following
properties:

(i) the Newtonian limit ∇2Φ = 4πGρ suggests that it should contain terms no
higher than linear in the second order derivatives of the metric tensor;

(ii) since Tμν is symmetric then Kμν must be symmetric as well.

3Recent scholarship has arrived to the conclusion that Einstein (Fig. 1.3) was the first to find the
equations and that Hilbert incorporated the final form of the equations in the proof reading process,
after Einstein’s communication (Corry et al. 1997).

http://commons.wikimedia.org
http://commons.wikimedia.org
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Since Rμνσρ is already linear in the second order derivatives of the metric, the most
general form of Kμν is

Kμν = aRμν + bRgμν + λgμν, (1.31)

where a, b, and λ are constants.
If every term in Kμν must be linear in the second order derivatives of gμν , then

λ= 0. Hence

Kμν = aRμν + bRgμν. (1.32)

The conservation of energy-momentum requires that T μν;μ = 0. So,

(
aRμν + bRgμν);μ = 0. (1.33)

Also, it happens that (Bianchi identities)
(
Rμν − 1

2
Rgμν

)

;μ
= 0. (1.34)

From here we get b=−a/2 and a = 1. We can then re-write the field equations as
(
Rμν − 1

2
Rgμν

)
= κTμν. (1.35)

In order to fix κ , we must compare the weak-field limit of these equations with
the Poisson’s equations of Newtonian gravity. This requires that κ =−8πG/c4.

The Einstein field equations can then be written in the simple form

Rμν − 1

2
gμνR =−8πG

c4
Tμν. (1.36)

This is a set of ten non-linear partial differential equations for the metric coefficients.
In Newtonian gravity, otherwise, there is only one gravitational field equation. Gen-
eral Relativity involves numerous non-linear differential equations. In this fact lies
its complexity, and its richness.

The conservation of mass-energy and momentum can be derived from the field
equations:

T
μν

;ν = 0 or ∇νT μν = 0. (1.37)

Contrary to classical electrodynamics, here the field equations entail the energy-
momentum conservation and the equations of motion for free particles (i.e. for
particles moving in the gravitational field, treated here as a background pseudo-
Riemannian space-time).

Let us consider, for example, a distribution of dust (i.e. a pressureless perfect
fluid) for which the energy-momentum tensor is

T μν = ρ uμ uν, (1.38)
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with uμ the 4-velocity. Then,

T
μν

;μ =
(
ρ uμ uν

)
;μ =

(
ρ uμ

)
;μ u

ν + ρ uμ uν ;μ = 0. (1.39)

Contracting with uν ,

c2(ρ uμ);μ +
(
ρ uμ

)
uν u

ν
;μ = 0, (1.40)

where we used uνuν = c2. Since the second term on the left is zero, we have

(
ρuμ

)
;μ = 0. (1.41)

Replacing in Eq. (1.39) we obtain

uμuν ;ν = 0, (1.42)

which is the equation of motion for the dust distribution in the gravitational field.
Einstein’s equations (1.36) can be cast in the form

Rμν −
1

2
δμν R =−

8πG

c4
T μν . (1.43)

Contracting by setting μ= ν we get

R =−16πG

c4
T , (1.44)

where T = T μμ . Replacing the curvature scalar in Eqs. (1.36) we obtain the alterna-
tive form

Rμν =−8πG

c4

(
Tμν − 1

2
T gμν

)
. (1.45)

In a region of empty space, Tμν = 0 and then

Rμν = 0, (1.46)

i.e. the Ricci tensor vanishes. The curvature tensor, which has 20 independent com-
ponents, does not necessarily vanish. This means that a gravitational field can exist
in empty space only if the dimensionality of space-time is 4 or higher. For space-
times with lower dimensionality, the curvature tensor vanishes if Tμν = 0. The com-
ponents of the curvature tensor that are not zero in empty space are contained in the
Weyl tensor (see Sect. 1.10 below for a definition of the Weyl tensor). Hence, the
Weyl tensor describes the curvature of empty space. Absence of curvature (flatness)
demands that both the Ricci and Weyl tensors should be zero.



1.5 The Cosmological Constant 13

1.5 The Cosmological Constant

The set of Einstein’s equations is not unique: we can add any constant multiple of
gμν to the left member of (1.36) and still obtain a consistent set of equations. It is
usual to denote this multiple by Λ, so the field equations can also be written as

Rμν − 1

2
gμνR+Λgμν =−8πG

c4
Tμν. (1.47)

The constant Λ is a new universal constant called, because of historical reasons, the
cosmological constant. If we consider some kind of “substance” with equation of
state given by P =−ρc2, then its energy-momentum tensor would be

Tμν =−P gμν = ρ c2gμν. (1.48)

Notice that the energy-momentum tensor of this substance depends only on the
space-time metric gμν , so it describes a property of the “vacuum” itself. We can
call ρ the energy density of the vacuum field. Then, we rewrite Eq. (1.47) as

Rμν − 1

2
gμνR =−8πG

c4

(
Tμν + T vac

μν

)
, (1.49)

in such a way that

ρvacc
2 = Λc4

8πG
. (1.50)

There is evidence (e.g. Reiss et al. 1998; Perlmutter et al. 1999) that the energy
density of the vacuum is different from zero. This means that Λ is small, but not
zero.4 The negative pressure seems to be driving a “cosmic acceleration”.

There is a simpler interpretation of the repulsive force that produces the acceler-
ate expansion: there is not a dark field. The only field is gravity, represented by gμν .
What is different is the law of gravitation: instead of being given by Eqs. (1.36), it
is expressed by Eqs. (1.47); gravity can be repulsive under some circumstances.

Despite the complexity of Einstein’s field equations a large number of exact so-
lutions have been found. They are usually obtained imposing symmetries on the
space-time in such a way that the metric coefficients can be calculated. The first and
most general solution to Eqs. (1.36) was obtained by Karl Schwarzschild in 1916,
short before he died in the Eastern Front of the Great War. This solution, as we shall
see, describes a non-rotating black hole of mass M .

4The current value is around 10−29 g cm−3.
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1.6 Relativistic Action

Let us consider a mechanical system whose configuration can be uniquely defined
by generalized coordinates qa , a = 1,2, . . . , n. The action of such a system is

S =
∫ t2

t1

L
(
qa, q̇a, t

)
dt, (1.51)

where t is the time. The Lagrangian L is defined in terms of the kinetic energy T
of the system and the potential energy U :

L= T −U = 1

2
mgab q̇

a q̇b −U, (1.52)

where gab is the metric of the configuration space, ds2 = gab dqa dqb. Hamilton’s
principle states that for arbitrary variations such as

qa(t)→ q ′a(t)= qa(t)+ δqa(t), (1.53)

the variation of the action δS vanishes. Assuming that δqa(t)= 0 at the endpoints
t1 and t2 of the trajectory, it can be shown that the Lagrangian must satisfy the
Euler-Lagrange equations:

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
= 0, a = 1,2, . . . , n. (1.54)

These are the equations of motion of the system.
In the case of the action of a set of fields5 defined on some general four dimen-

sional space-time manifold, we can introduce a Lagrangian density L of the fields
and their derivatives:

S =
∫
R
L
(
Φa, ∂μΦ

a, ∂μ∂νΦ
a, . . .

)
d4x, (1.55)

where d4x = dx0dx1dx2dx3,Φa is a field on the manifold, and R is a region of the
manifold. The action should be a scalar, then we should use the element of volume
in a coordinate system xμ written in the invariant form

√−g d4x, where g = ‖gμν‖
is the determinant of the metric tensor in that coordinate system. The corresponding
action is

S =
∫
R
L
√−g d4x, (1.56)

where the Lagrangian field L is related to the Lagrangian density by

L= L√−g. (1.57)

5A field is a physical system with infinite degrees of freedom.
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The field equations for Φa can be derived demanding that the action (1.55) is
invariant under small variations in the fields:

Φa(x)→Φ ′a(x)=Φa + δΦa(x). (1.58)

No coordinate has been changed here, just the form of the fields in a fixed coordinate
system. Assuming for simplicity that derivatives of order higher than first can be
neglected we have:

∂μΦ
a→ ∂μΦ

′a = ∂μΦa + ∂μ
(
δΦa

)
. (1.59)

Using these variations we obtain the variation of the action S→ S + δS, where

δS =
∫
R
δLd4x =

∫
R

[
∂L
∂Φa

δΦa + ∂L
∂(∂μΦa)

δ
(
∂μΦ

a
)]
d4x. (1.60)

After some math (see, e.g., Hobson et al. 2007), we get:

δL
δΦa

= ∂L
∂Φa

− ∂μ
[

∂L
∂(∂μΦa)

]
= 0. (1.61)

These are the Euler-Lagrange equations for the local field theory defined by the
action (1.55).

If the field theory is General Relativity, we need to define a Lagrangian density
which is a scalar under general coordinate transformations and which depends on
the components of the metric tensor gμν , which represents the dynamical potential
of the gravitational field. The simplest scalar that can be constructed from the metric
and its derivatives is the Ricci scalar R. The simplest possible action is the so-called
Einstein-Hilbert action:

SEH =
∫
R
R
√−g d4x. (1.62)

The Lagrangian density is L=R√−g. Introducing a variation in the metric

gμν→ gμν + δgμν, (1.63)

we can arrive, after significant algebra, to

δSEH =
∫
R

(
Rμν − 1

2
gμνR

)
δgμν

√−g d4x. (1.64)

By demanding that δSEH = 0 and considering that δgμν is arbitrary, we get

Gμν ≡Rμν − 1

2
gμνR = 0. (1.65)

These are the Einstein’s field equations in vacuum. The tensor Gμν is called the
Einstein tensor. This variational approach was used by Hilbert in November 1915
to derive Einstein’s equations from simplicity and symmetry arguments.
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If there are non-gravitational fields present the action will have and additional
component:

S = 1

2κ
SEH + SM =

∫
R

(
1

2κ
LEH +LM

)
d4x, (1.66)

where SM is the non-gravitational action and κ =−8πG/c4. If we vary the action
with respect to the inverse of the metric tensor we get:

1

2κ

δLEH

δgμν
+ δLM

δgμν
= 0. (1.67)

Since δSEH = 0,

δLEH

δgμν
=√−gGμν. (1.68)

Then, if we identify the energy-momentum tensor of the non-gravitational fields in
the following way

Tμν = 2√−g
δLM

δgμν
, (1.69)

we obtain the full Einstein’s equations,

Gμν =−8πG

c4
Tμν.

1.7 Math Note: Invariant Volume Element

Let us calculate the N -dimensional invariant volume element dNV in an N -
dimensional pseudo-Riemannian manifold. In an orthogonal coordinate system this
volume element is:

dNV =√|g11 g22 · · ·gNN |dx1dx2 · · ·dxN .
In such a system the determinant of the metric tensor is

‖gab‖ = g11 g22 · · ·gNN,
i.e. the product of the diagonal elements.

Using the notation adopted above for the determinant we can write:

dNV =√|g|dx1dx2 · · ·dxN .
It is not difficult to show that this result remains valid in an arbitrary coordinate
system (see Hobson et al. 2007).
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1.8 The Cauchy Problem

The Cauchy problem concerns the solution of a partial differential equation that
satisfies certain side conditions which are given on a hypersurface in the domain
of the functions. It is an extension of the initial value problem. In the case of the
Einstein field equations, the hypersurface is given by the condition x0/c = t . If it
were possible to obtain from the field equations an expression for ∂2gμν/∂(x

0)2

everywhere at t , then it would be possible to compute gμν and ∂gμν/∂x0 at a time
t + δt , and repeating the process the metric could be calculated for all xμ. This is
the problem of finding the causal development of a physical system from initial data.

Let us prescribe initial data gμν and gμν,0 on S defined by x0/c= t . The dynam-
ical equations are the six equations defined by

Gi,j =−8πG

c4
T ij . (1.70)

When these equations are solved for the 10 second derivatives ∂2gμν/∂(x
0)2, there

appears a fourfold ambiguity, i.e. four derivatives are left indeterminate. In order to
completely fix the metric it is necessary to impose four additional conditions. These
conditions are usually imposed upon the affine connection:

Γ μ ≡ gαβΓ μαβ = 0. (1.71)

The condition Γ μ = 0 implies �2xμ = 0, so the coordinates are known as har-
monic. With such conditions it can be shown the existence, uniqueness and stability
of the solutions. But the result is in no way general and this is an active field of re-
search. The fall of predictability posits a serious problem for the space-time interior
of black holes and for multiply connected space-times, as we shall see.

1.9 The Energy-Momentum of Gravitation

Taking the covariant derivative to both sides of Einstein’s equations and using
Bianchi identities we get

(
Rμν − 1

2
gμνR

)

;μ
= 0, (1.72)

and then T μν;μ = 0. This means the conservation of energy and momentum of mat-
ter and non-gravitational fields, but it is not strictly speaking a full conservation
law, since the energy-momentum of the gravitational field is not included. Because
of the Equivalence Principle, it is always possible to choose a coordinate system
where the gravitational field locally vanishes. Hence, its local energy is zero. En-
ergy is the more general property of things: the potential to change. This property,
however, cannot be associated with a pure gravitational field at any point accord-
ing to General Relativity. Therefore, it is not possible to associate a tensor with the
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energy-momentum of the gravitational field. Nonetheless, extended regions with
gravitational field have energy-momentum since it is impossible to make the field
null in all points of the region just through a coordinate change. We can then define
a quasi-tensor for the energy-momentum of gravity. Quasi-tensors are objects that
under global linear transformations behave like tensors.

We can define a quasi-tensor of energy-momentum such that

Θμν,ν= 0. (1.73)

In the absence of gravitational fields it satisfies Θμν = T μν . Hence, we can write:

Θμν =√−g (T μν + tμν)=Λμνα,α . (1.74)

An essential property of tμν is that it is not a tensor, since in the superpotential
on the right side appears the normal derivative, not the covariant one. Since tμν can
be interpreted as the contribution of gravitation to the quasi-tensor Θμν , we can
expect that it should be expressed in geometric terms only, i.e. as a function of the
affine connection and the metric. Landau and Lifshitz (1962) found an expression
for tμν that contains only first derivatives and is symmetric:

tμν = c4

16πG

[(
2Γ σρη Γ

γ
σγ − Γ σργ Γ γησ − Γ σρσ Γ γηγ

)(
gμρgνη − gμνgρη)

+ gμρgησ (Γ νργ Γ γησ + Γ νησ Γ γργ + Γ νσγ Γ γρη + Γ νρη Γ γσγ
)

+ gνρgησ (Γ μργ Γ γησ + Γ μησ Γ γργ + Γ μσγ Γ γρη + Γ μρη Γ γσγ
)

+ gρηgσγ (Γ μρσ Γ νηγ − Γ μρη Γ νσγ
) ]
. (1.75)

It is possible to find in a curved space-time a coordinate system such that locally
tμν = 0. Similarly, an election of curvilinear coordinates in a flat space-time can
yield non-vanishing values for the components of tμν . We infer from this that the
energy of the gravitational field is a global property, not a local one. There is energy
in a region where there is a gravitational field, but in General Relativity it makes no
sense to talk about the energy of a given point of the field. For other proposals of
tμν see Maggiore (2008).

1.10 Weyl Tensor and the Entropy of Gravitation

The Weyl curvature tensor is the traceless component of the curvature (Riemann)
tensor. In other words, it is a tensor that has the same symmetries as the Riemann
tensor with the extra condition that metric contraction yields zero.

In 3 dimensions the Weyl curvature tensor vanishes identically. In dimensions
≥ 4 the Weyl curvature is generally nonzero. If the Weyl tensor vanishes, then there
exists a coordinate system in which the metric tensor is proportional to a constant
tensor.
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The Weyl tensor can be obtained from the full curvature tensor by subtracting
out various traces. This is most easily done by writing the Riemann tensor as a
(0, 4)-valent tensor (by contracting with the metric). The Riemann tensor has 20 in-
dependent components, 10 of which are given by the Ricci tensor and the remaining
10 by the Weyl tensor.

The Weyl tensor is given in components by

Cabcd =Rabcd + 2

n− 2
(ga[cRd]b−gb[cRd]a)+ 2

(n− 1)(n− 2)
R ga[cgd]b, (1.76)

where Rabcd is the Riemann tensor, Rab is the Ricci tensor, R is the Ricci scalar and
“[ ]” refers to the antisymmetric part. In 4 dimensions the Weyl tensor is

Cabcd =Rabcd + 1

2
(gacRdb − gbcRda − gadRcb + gbdRca)

+ 1

6
(gacgdb − gadgcb)R. (1.77)

In addition to the symmetries of the Riemann tensor, the Weyl tensor satisfies

C abad ≡ 0. (1.78)

Two metrics that are conformally related to each other, i.e.

gab =Ω2gab, (1.79)

where Ω(x) is a non-zero differentiable function, have the same Weyl tensor:

C
a

bcd = C abcd . (1.80)

The absence of structure in space-time (i.e. spatial isotropy and hence no grav-
itational principal null-directions) corresponds to the absence of Weyl conformal
curvature (C2 = CabcdCabcd = 0). When clumping takes place, the structure is char-
acterized by a non-zero Weyl curvature. In the interior of a black hole, as we shall
see, the Weyl curvature is large and goes to infinity at the singularity. Actually, Weyl
curvature goes faster to infinity than Riemann curvature (the former as r−3 and the
latter as r−3/2 for a Schwarzschild black hole). Since the initial conditions of the
Universe seem highly uniform and the primordial state one of low-entropy, Penrose
(1979) has proposed that the Weyl tensor gives a measure of the gravitational en-
tropy and that the Weyl curvature vanishes at any initial singularity (this would be
valid for white holes if they were to exist). In this way, despite the fact that matter
was in local equilibrium in the early Universe, the global state was of low entropy,
since the gravitational field was highly uniform and dominated the overall entropy.

1.11 Gravitational Waves

Before the development of General Relativity, Heinrik Lorentz had speculated that
“gravitation can be attributed to actions which do not propagate with a velocity
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larger than that of the light” (Lorentz 1900). The term gravitational waves appeared
for the first time in 1905 when H. Poincaré discussed the extension of Lorentz in-
variance to gravitation (Poincaré 1905, see Pais 1982 for further details). The idea
that a perturbation in the source of the gravitational field can result in a wave that
would manifest as a moving disturbance in the metric field was developed by Ein-
stein in 1916, shortly after the final formulation of the field equations (Einstein
1916). Then, in 1918, Einstein presented the quadrupole formula for the energy loss
of a mechanical system (Einstein 1918).

Einstein’s approach was based on the weak-field approximation of the metric
field:

gμν = ημν + hμν, (1.81)

where ημν is the Minkowski flat metric and |hμν | � 1 is a small perturbation to the
background metric. Since hμν is small, all products that involve it and its derivatives
can be neglected. And because the metric is almost flat all indices can be lowered or
raised through ημν and ημν instead of gμν and gμν . We can then write

gμν = ημν − hμν. (1.82)

With this, we can compute the affine connection:

Γ μνσ =
1

2
ημβ(hσβ,ν + hνβ,σ − hνσ,β)= 1

2

(
hμσ,ν + hμν,σ − h ,μ

νσ

)
. (1.83)

Here, h ,μ
νσ = ημβhνσ,β . Introducing h= hμμ = ημνhμν , we can write the Ricci ten-

sor and the curvature scalar as:

Rμν = Γ αμα,ν − Γ αμν,α =
1

2

(
h,μν − hαν,μα − hαμ,να + h α

μν,α

)
, (1.84)

and

R ≡ gμνRμν = ημνRμν = hα,α − hαβ,αβ . (1.85)

Then, the field equations (1.36) can be cast in the following way:

h
α

μν,α + (
ημν h̄

αβ
,αβ − h̄αν,μα − h̄αμ,να

)= 2κTμν, (1.86)

where

hμν ≡ hμν − 1

2
hημν. (1.87)

We can make further simplifications through a gauge transformation. A gauge
transformation is a small change of coordinates

x′μ ≡ xμ + ξμ(xα), (1.88)



1.11 Gravitational Waves 21

where the ξα are of the same order of magnitude as the perturbations of the metric.
The matrix Λμν ≡ ∂x′μ/∂xν is given by

Λμν = δμν + ξμ,ν . (1.89)

Under gauge transformations

h
′μν = hμν − ξμ,ν − ξν,μ + ημνξα,α. (1.90)

The gauge transformation can be chosen in such a way that

h
μα

,α = 0. (1.91)

Then, the field equations simplify to

h
α

μν,α = 2κTμν. (1.92)

The imposition of this gauge condition is analogous to what is done in electro-
magnetism with the introduction of the Lorentz gauge condition Aμ,μ = 0, where
Aμ is the electromagnetic 4-potential. A gauge transformation Aμ→Aμ −ψ,μ
preserves the Lorentz gauge condition if ψμ,μ = 0. In the gravitational case, we
have ξμα,α = 0.

Introducing the d’Alembertian

�2 = ημν∂μ∂ν = 1

c2

∂2

∂t2
−∇2, (1.93)

if h
μν

,ν = 0 we get

�2h
μν = 2κT μν. (1.94)

The gauge condition can be expressed as

�2ξμ = 0. (1.95)

Recalling the definition of κ , we can write the wave equations of the gravitational
field, insofar as the amplitudes are small, as:

�2h
μν =−16πG

c4
T μν. (1.96)

In the absence of matter and non-gravitational fields, these equations become

�2h
μν = 0. (1.97)

The simplest solution to Eq. (1.97) is

h
μν =�[Aμν exp

(
ikαx

α
)]
, (1.98)
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where Aμν is the amplitude matrix of a plane wave that propagates with direction
kμ = ημαkα and � indicates that just the real part of the expression should be con-
sidered. The 4-vector kμ is null and satisfies

Aμνkν = 0. (1.99)

Since h
μν

is symmetric the amplitude matrix has ten independent components.
Equation (1.99) can be used to reduce this number to six. The gauge condition al-
lows a further reduction, so finally we have only two independent components. Ein-
stein realized this in 1918. These two components characterize two different pos-
sible polarization states for the gravitational waves. In the so-called traceless and
transverse gauge—TT—we can introduce two linear polarization matrices defined
as:

e
μν
1 =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠ , (1.100)

and

e
μν
2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ , (1.101)

in such a way that the general amplitude matrix is

Aμν = αeμν1 + βeμν2 , (1.102)

with α and β complex constants.
The general solution of Eq. (1.96) is:

h
μν(
x0, x

)= κ

2π

∫
T μν(x0 − |x− x′|, x′)

|x− x′| dV ′. (1.103)

In this integral we have considered only the effects of sources in the past of the
space-time point (x0, x). The integral extends over the space-time region formed
by the intersection the past half of the null cone at the field point with the world
tube of the source.

If the source is small compared to the wavelength of the gravitational radiation,
we can approximate (1.103) by

h
μν
(ct, x)= 4G

c4r

∫
T μν

(
ct − r, x′

)
dV ′. (1.104)

This approximation is valid in the far zone, where r > l, with l the typical size of the
source. In this region the gravitational wave looks like a plane wave, and a simple

expression for h
ij

can be obtained (see Foster and Nightingale 2006).



1.12 Alternative Theories of Gravitation 23

1.12 Alternative Theories of Gravitation

1.12.1 Scalar-Tensor Gravity

Perhaps the most important alternative theory of gravitation is the Brans-Dicke the-
ory of scalar-tensor gravity (Brans and Dicke 1961). The original motivation for this
theory was to implement the idea of Mach that the phenomenon of inertia was due
to the acceleration of a given system with respect to the general mass distribution of
the universe. The masses of the different fundamental particles would not be basic
intrinsic properties but a relational property originated in the interaction with some
cosmic field. We can express this in the form:

mi
(
xμ

)= λiφ
(
xμ

)
.

Since the masses of the different particles can be measured only through the
gravitational acceleration Gm/r2, the gravitational constant G should be related to
the average value of some cosmic scalar field φ, which is coupled with the mass
density of the universe.

The simplest general covariant equation for a scalar field produced by matter is

�2φ = 4πλ
(
TM)μ

μ
, (1.105)

where �2φ = φ;μ;μ is, again, the invariant d’Alembertian, λ is a coupling constant,

and (TM)μν is the energy-momentum tensor of everything but gravitation. The mat-
ter and non-gravitational fields generate the cosmic scalar field φ. This field is nor-
malized such that

〈φ〉 = 1

G
. (1.106)

The scalar field, as anything else, also generates gravitation, so Einstein’s field
equations are re-written as:

Rμν − 1

2
gμνR =− 8π

c4φ

(
TM
μν + T φμν

)
. (1.107)

Here, T φμν is the energy momentum tensor of the scalar field φ. Its explicit form
is rather complicated (see Weinberg 1972, p. 159). Because of historical reasons the
parameter λ is written as:

λ= 2

3+ 2ω
.

In the limit ω→∞, λ→ 0 and T φμν vanishes, and hence the Brans-Dicke theory
reduces to Einstein’s.

One of the most interesting features of Brans-Dicke theory is that G varies with
time because it is determined by the scalar field φ. A variation of G would affect
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the orbits of planets, the stellar evolution, and many other astrophysical phenom-
ena. Experiments can constrain ω to ω > 500. Hence, Einstein theory seems to be
correct, at least at low energies.

1.12.2 Gravity with Extra Dimensions

The so-called hierarchy problem is the difficulty to explain why the characteristic
energy scale of gravity, the Planck energy MPc

2 ∼ 1019 GeV,6 is 16 orders of mag-
nitude larger than the electro-weak scale, Mewc

2 ∼ 1 TeV. A possible solution was
presented in 1998 by Arkani-Hamed et al. (1998), with the introduction of gravity
with large extra dimensions (LEDs). The idea of extra dimensions was, however,
no new in physics. It was originally introduced by Kaluza (1921) with the aim of
unifying gravitation and electromagnetism. In a different context, Nordstrøm (1914)
also discussed the possibility of a fifth dimension.

Kaluza’s fundamental insight was to write the action as

S = 1

16πĜ

∫
R
R̂
√
−ĝ d4x dy, (1.108)

instead of in the form given by expression (1.66). In Kaluza’s action y is the coordi-
nate of an extra dimension and the hats denote 5-dimensional (5-D) quantities. The
interval results:

ds2 = ĝμνdxμdxν, (1.109)

with μ,ν running from 0 to 4, being x4 = y the extra dimension. The extra dimen-
sion should have no effect over the gravitation, hence Kaluza imposed the condition

∂ĝμν

∂y
= 0. (1.110)

Since gravitation manifests through the derivatives of the metric, condition (1.110)
implies that the extra dimension does not affect the predictions of General Relativity.
If we write the metric as

ĝμν = φ−1/3
(
gμν + φAμAν φAμ

φAν φ

)
, (1.111)

then, the action becomes

S = 1

16πG

∫
R

(
R− 1

4
φFabF

ab − 1

6φ2∂aφ
∂aφ

)√
−ĝ d4x, (1.112)

6The Planck mass is MP =√�c/G= 2.17644(11)× 10−5 g. The Planck mass is the mass of the
Planck particle, a hypothetical minuscule particle whose effective radius equals the Planck length
lP =

√
�G/c3 = 1.616252(81)× 10−33 cm.



1.12 Alternative Theories of Gravitation 25

Fig. 1.4 Compactified extra
dimensions in Kaluza-Klein
and ADD braneworld
theories. Adapted from
Whisker (2006)

where Fab = ∂aAb − ∂bAa and

G= Ĝ∫
dy
.

The action (1.112) describes 4-D gravity along with electromagnetism. The price
paid for this unification was the introduction of a scalar field φ called the dilaton
(which was fixed by Kaluza to φ = 1) and an extra fifth dimension which is not
observed.

Klein (1926) suggested that the fifth dimension was not observable because it is
compactified on a circle. This compactification can be achieved identifying y with
y + 2πR. The quantity R is the size of the extra dimension. Such a size should be
extremely small in order not to be detected in experiments. The only natural length
of the theory is the Planck length: R ≈ lP ∼ 10−35 m.

A very interesting feature of the theory is that charge conservation can be inter-
preted as momentum conservation in the fifth dimension:

Jμ = 2αT μ5, (1.113)

where Jμ is the current density and α a constant. The variation of the action (1.112)
yields both Einstein’s and Maxwell’s equations:

Gμν = κTμν and ∂μF
μν = c

2κ

2G
Jν.

Unfortunately, the Kaluza-Klein theory is not consistent with other observed fea-
tures of particle physics as described by the Standard Model. This shortcoming is
removed in the mentioned LED model by Arkani-Hamed et al. (1998), called ADD
braneworld model. The model postulates n flat, compact extra dimensions of size
R, but the Standard Model fields are confined to a 4-D brane, with only gravity
propagating in the bulk (see Fig. 1.4). The effective potential for gravity behaves
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as:7

V (r) ≈ m1m2

M2+n
f

1

rn+1
, r�R, (1.114)

V (r) ≈ m1m2

M2+n
f

1

Rnr
, r�R, (1.115)

whereMf is the fundamental mass scale of gravity in the full (4+ n)-D space-time.
Hence, in the brane the effective 4-D Planck scale is given by:

M2
P =M2+n

f Rn. (1.116)

In this way the fundamental scale Mf can be much lower than the Planck mass.
If the fundamental scale is comparable to the electroweak scale, Mfc

2 ∼Mewc
2 ∼

1 TeV, then we have that n≥ 2.
Randall and Sundrum (1999) suggested that the bulk geometry might be curved

and the brane could have a tension. Hence, the brane becomes a gravitating object,
interacting dynamically with the bulk. A Randall-Sundrum (RS) universe consists
of two branes of torsion σ1 and σ2 bounding a slice of an anti-de Sitter space.8 The
two branes are separated by a distance L and the fifth dimension y is periodic with
period 2L. The bulk Einstein’s equations read

Rab − 1

2
Rgab =Λ5gab, (1.117)

where the bulk cosmological constantΛ5 can be expressed in terms of the curvature
length l as

Λ5 = 6

l2
. (1.118)

The metric is

ds2 = a2(y)ημνdx
μdxν + dy2. (1.119)

Using the previous expressions, we can write the metric as:

ds2 = e−2|y|/lημνdxμdxν + dy2. (1.120)

The term e−2|y|/l is called the warp factor. The effective Planck mass becomes

M2
P = e2L/lM3

f l. (1.121)

7Notice that G=M−2
P �c or G=M−2

P in units of �c= 1.
8An anti-de Sitter space-time has a metric that is a maximally symmetric vacuum solution of
Einstein’s field equations with an attractive cosmological constant (corresponding to a negative
vacuum energy density and positive pressure). This space-time has a constant negative scalar cur-
vature.
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According to the ratio L/l, the effective Planck mass can change. If we wish
to have Mfc

2 ∼ 1 TeV, then we need L/l ∼ 50 in order to generate the observed
Planck mass Mfc

2 ∼ 1019 GeV.
Other RS universes consist of a single, positive tension brane immersed in an in-

finite (non-compact) extra dimension. The corresponding metric remains the same:

ds2 = e−2|y|/lημνdxμdxν + dy2.

The 5-D graviton propagates through the bulk, but only the zero (massless) mode
moves on the brane (for details see Maartens 2004).

1.12.3 f (R)-Gravity

In f (R)-gravity, the Lagrangian of the Einstein-Hilbert action

S[g] =
∫

1

2κ
R
√−g d4x (1.122)

is generalized to

S[g] =
∫

1

2κ
f (R)

√−g d4x, (1.123)

where g is the determinant of the metric tensor and f (R) is some function of the
curvature (Ricci) scalar.

The field equations are obtained by varying with respect to the metric. The vari-
ation of the determinant is

δ(
√−g)=−1

2

√−g gμνδgμν.

The Ricci scalar is defined as

R = gμνRμν.
Therefore, its variation with respect to the inverse metric gμν is given by

δR = Rμνδgμν + gμνδRμν
= Rμνδgμν + gμν

(∇ρδΓ ρνμ −∇νδΓ ρρμ
)

(1.124)

Since δΓ λμν is actually the difference of two connections, it should transform as a
tensor. Therefore, it can be written as

δΓ λμν =
1

2
gλa(∇μδgaν +∇νδgaμ −∇aδgμν),

and substituting in the equation above:

δR =Rμνδgμν + gμν�δgμν −∇μ∇νδgμν.
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The variation in the action reads:

δS[g] = 1

2κ

∫ (
δf (R)

√−g + f (R) δ√−g)d4x

= 1

2κ

∫ (
F(R) δR

√−g− 1

2

√−g gμνδgμν f (R)
)

d4x

= 1

2κ

∫ √−g
[
F(R)

(
Rμνδg

μν + gμν�δgμν −∇μ∇νδgμν
)

− 1

2
gμν δg

μνf (R)

]
d4x,

where F(R)= ∂f (R)
∂R

. Integrating by parts on the second and third terms we get

δS[g] = 1

2κ

∫ √−g δgμν
[
F(R)Rμν − 1

2
gμνf (R)+ (gμν�−∇μ∇ν)F (R)

]
d4x.

By demanding that the action remains invariant under variations of the metric,
i.e. δS[g] = 0, we obtain the field equations:

F(R)Rμν − 1

2
f (R)gμν + [gμν�−∇μ∇ν]F(R)= κTμν, (1.125)

where Tμν is the energy-momentum tensor defined as

Tμν =− 2√−g
δ(
√−g Lm)

δgμν
,

and Lm is the matter Lagrangian. If F(R)= 1, i.e. f (R)=R, we recover Einstein’s
theory.
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Chapter 2
Black Holes

2.1 Dark Stars: A Historical Note

It is usual in textbooks to credit John Michell and Pierre-Simon Laplace for the idea
of black holes, in the XVIII Century. The idea of a body so massive that even light
could not escape was put forward by geologist Rev. John Michell in a letter written
to Henry Cavendish in 1783 to the Royal Society:

If the semi-diameter of a sphere of the same density as the Sun were to exceed that of the
Sun in the proportion of 500 to 1, a body falling from an infinite height toward it would
have acquired at its surface greater velocity than that of light, and consequently supposing
light to be attracted by the same force in proportion to its inertia, with other bodies, all
light emitted from such a body would be made to return toward it by its own proper gravity.
(Michell 1784).

In 1796, the mathematician Pierre-Simon Laplace promoted the same idea in the
first and second editions of his book Exposition du système du Monde (it was re-
moved from later editions). Such “dark stars” were largely ignored in the nineteenth
century, since light was then thought to be a massless wave and therefore not influ-
enced by gravity. Unlike the modern concept of black hole, the object behind the
horizon in black stars is assumed to be stable against collapse. Moreover, no equa-
tion of state was adopted neither by Michell nor by Laplace. Hence, their dark stars
were Newtonian objects, infinitely rigid, and they have nothing to do with the nature
of space and time, which were considered by them as absolute concepts. Nonethe-
less, Michel and Laplace could calculate correctly the size of such objects from the
simple device of equating the potential and escape energy from a body of mass M :

1

2
mv2 = GMm

r2
. (2.1)

Just setting v = c and assuming that the gravitational and the inertial mass are the
same, we get

rdark star =
√

2GM

c2
. (2.2)

G.E. Romero, G.S. Vila, Introduction to Black Hole Astrophysics,
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Dark stars are objects conceivable only within the framework of the Newtonian
theory of matter and gravitation. In the context of general relativistic theories of
gravitation, collapsed objects have quite different properties. Before exploring par-
ticular situations that can be represented by different solutions of Einstein’s field
equations, it is convenient to introduce a general definition of a collapsed gravita-
tional system in a general space-time framework. This is what we do in the next
section.

2.2 A General Definition of Black Hole

We shall now provide a general definition of a black hole, independently of the co-
ordinate system adopted in the description of space-time, and even of the exact form
of the field equations. First, we shall introduce some preliminary useful definitions
(e.g. Hawking and Ellis 1973; Wald 1984).

Definition A causal curve in a space-time (M,gμν) is a curve that is non space-like,
that is, piecewise either time-like or null (light-like).

We say that a given space-time (M,gμν) is time-orientable if we can define over
M a smooth non-vanishing time-like vector field.

Definition If (M,gμν) is a time-orientable space-time, then ∀p ∈ M , the causal
future of p, denoted J+(p), is defined by:

J+(p)≡ {
q ∈M|∃ a future-directed causal curve from p to q

}
. (2.3)

Similarly,

Definition If (M,gμν) is a time-orientable space-time, then ∀p ∈ M , the causal
past of p, denoted J−(p), is defined by:

J−(p)≡ {q ∈M|∃ a past-directed causal curve from p to q}. (2.4)

The causal future and past of any set S ⊂M are given by:

J+(S)=
⋃
p∈S

J+(P ) (2.5)

and,

J−(S)=
⋃
p∈S

J−(P ). (2.6)

A set S is said achronal if no two points of S are time-like related. A Cauchy
surface (Sect. 1.8) is an achronal surface such that every non space-like curve in M
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crosses it once, and only once. A space-time (M,gμν) is globally hyperbolic if it
admits a space-like hypersurface S ⊂M which is a Cauchy surface for M .

Causal relations are invariant under conformal transformations of the metric. In
this way, the space-times (M,gμν) and (M, g̃μν), where g̃μν =Ω2gμν , with Ω a
non-zero Cr function, have the same causal structure.

Particle horizons occur whenever a particular system never gets to be influenced
by the whole space-time. If a particle crosses the horizon, it will not exert any further
action upon the system with respect to which the horizon is defined.

Definition For a causal curve γ the associated future (past) particle horizon is de-
fined as the boundary of the region from which the causal curves can reach some
point on γ .

Finding the particle horizons (if one exists at all) requires a knowledge of the
global space-time geometry.

Let us now consider a space-time where all null geodesics that start in a region
J − end at J +. Then, such a space-time, (M,gμν), is said to contain a black hole if
M is not contained in J−(J +). In other words, there is a region from where no null
geodesic can reach the asymptotic flat1 future space-time, or, equivalently, there is
a region of M that is causally disconnected from the global future. The black hole
region, BH , of such space-time is BH = [M − J−(J +)], and the boundary of BH
in M , H = J−(J +)⋂M , is the event horizon.

Notice that a black hole is conceived as a space-time region, i.e. what character-
izes the black hole is its metric and, consequently, its curvature. What is peculiar
of this space-time region is that it is causally disconnected from the rest of the
space-time: no events in this region can make any influence on events outside the
region. Hence the name of the boundary, event horizon: events inside the black hole
are separated from events in the global external future of space-time. The events in
the black hole, nonetheless, as all events, are causally determined by past events.
A black hole does not represent a breakdown of classical causality. As we shall see,
even when closed time-like curves are present, local causality still holds along with
global consistency constrains. And in case of singularities, they do not belong to
space-time, so they are not predicable (i.e. we cannot attach any predicate to them,
nothing can be said about them) in the theory. More on this in Sect. 3.6.

2.3 Schwarzschild Black Holes

The first exact solution of Einstein’s field equations was found by Karl Schwarz-
schild in 1916. This solution describes the geometry of space-time outside a spheri-
cally symmetric matter distribution.

1Asymptotic flatness is a property of the geometry of space-time which means that in appropriate
coordinates, the limit of the metric at infinity approaches the metric of the flat (Minkowskian)
space-time.
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2.3.1 Schwarzschild Solution

The most general spherically symmetric metric is

ds2 = α(r, t)dt2 − β(r, t)dr2 − γ (r, t)dΩ2 − δ(r, t)drdt, (2.7)

where dΩ2 = dθ2+sin2 θdφ2. We are using spherical polar coordinates. The metric
(2.7) is invariant under rotations (isotropic).

The invariance group of general relativity is formed by the group of general trans-
formations of coordinates of the form x′μ = f μ(x). This yields 4 degrees of free-
dom, two of which have been used when adopting spherical coordinates (the trans-
formations that do not break the central symmetry are r ′ = f1(r, t) and t ′ = f2(r, t)).
With the two available degrees of freedom we can freely choose two metric coeffi-
cients, whereas the other two are determined by Einstein’s equations. Some possi-
bilities are:

• Standard gauge.

ds2 = c2A(r, t)dt2 −B(r, t)dr2 − r2dΩ2.

• Synchronous gauge.

ds2 = c2dt2 − F 2(r, t)dr2 −R2(r, t)dΩ2.

• Isotropic gauge.

ds2 = c2H 2(r, t)dt2 −K2(r, t)
[
dr2 + r2(r, t)dΩ2].

• Co-moving gauge.

ds2 = c2W 2(r, t)dt2 −U(r, t)dr2 − V (r, t)dΩ2.

Adopting the standard gauge and a static configuration (no dependence of the
metric coefficients on t), we can get equations for the coefficients A and B of the
standard metric:

ds2 = c2A(r)dt2 −B(r)dr2 − r2dΩ2. (2.8)

Since we are interested in the solution outside the spherical mass distribution, we
only need to require the Ricci tensor to vanish:

Rμν = 0.

According to the definition of the curvature tensor and the Ricci tensor, we have:

Rμν = ∂νΓ σμσ − ∂σΓ σμν + Γ ρμσΓ σρν − Γ ρμνΓ σρσ = 0. (2.9)

If we remember that the affine connection depends on the metric as

Γ σμν =
1

2
gρσ (∂νgρμ + ∂μgρν − ∂ρgμν),
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we see that we have to solve a set of differential equations for the components of
the metric gμν .

The metric coefficients are:

g00 = A(r),
g11 = −B(r),
g22 = −r2,

g33 = −r2 sin2 θ,

g00 = 1/A(r),

g11 = −1/B(r),

g22 = −1/r2,

g33 = −1/r2 sin2 θ.

Then, only nine of the 40 independent connection coefficients are different from
zero. They are:

Γ 1
01 = A′/(2A),
Γ 1

22 = −r/B,
Γ 2

33 = − sin θ cos θ,

Γ 1
00 = A′/(2B),
Γ 1

33 = −
(
r sin2 /B

)
,

Γ 3
13 = 1/r,

Γ 1
11 = B ′/(2B),
Γ 2

12 = 1/r,

Γ 3
23 = cot θ.

Replacing in the expression for Rμν :

R00 = −A
′′

2B
+ A′

4B

(
A′

A
+ B

′

B

)
− A′

rB
,

R11 = A′′

2A
− A′

4A

(
A′

A
+ B

′

B

)
− B ′

rB
,

R22 = 1

B
− 1+ r

2B

(
A′

A
− B

′

B

)
,

R33 = R22 sin2 θ.



36 2 Black Holes

Einstein’s field equations for the region of empty space then become:

R00 =R11 =R22 = 0

(the fourth equation has no additional information). Multiplying the first equation
by B/A and adding the result to the second equation, we get:

A′B +AB ′ = 0,

from which AB = constant. We can write then B = αA−1. Going to the third equa-
tion and replacing B we obtain: A+ rA′ = α, or:

d(rA)

dr
= α.

The solution of this equation is:

A(r)= α
(

1+ k
r

)
,

with k another integration constant. For B we get:

B =
(

1+ k
r

)−1

.

If we now consider the Newtonian limit:

A(r)

c2
= 1+ 2Φ

c2
,

with Φ =−GM/r the Newtonian gravitational potential, we conclude that

k =−2GM

c2

and

α = c2.

Therefore, the Schwarzschild solution for a static massM can be written in spher-
ical coordinates (t, r, θ,φ) as

ds2 =
(

1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (2.10)

As mentioned, this solution corresponds to the vacuum region exterior to the
spherical object of mass M . Inside the object, space-time will depend on the pecu-
liarities of the physical object.
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The metric given by Eq. (2.10) has some interesting properties. Let’s assume that
the mass M is concentrated at r = 0. There seems to be two singularities at which
the metric diverges: one at r = 0 and the other at

rSchw = 2GM

c2
. (2.11)

The length rSchw is know as the Schwarzschild radius of the object of mass M .
Usually, at normal densities, rSchw is well inside the outer radius of the physical
system, and the solution does not apply in the interior but only to the exterior of
the object. For instance, for the Sun rSchw ∼ 3 km. However, for a point mass, the
Schwarzschild radius is in the vacuum region and space-time has the structure given
by (2.10). In general, we can write

rSchw ∼ 3

(
M

M�

)
km,

where M� = 1.99× 1033 g is the mass of the Sun.
It is easy to see that strange things occur close to rSchw. For instance, for the

proper time we get:

dτ =
(

1− 2GM

rc2

)1/2

dt, (2.12)

or

dt =
(

1− 2GM

rc2

)−1/2

dτ. (2.13)

When r→∞ both times agree, so t is interpreted as the proper time measured
from an infinite distance. As the system with proper time τ approaches to rSchw, dt
tends to infinity according to Eq. (2.13). The object never reaches the Schwarzschild
surface when seen by an infinitely distant observer. The closer the object is to the
Schwarzschild radius, the slower it moves for the external observer.

A direct consequence of the difference introduced by gravity in the local time
with respect to the time at infinity is that the radiation that escapes from a given
radius r > rSchw will be redshifted when received by a distant and static observer.
Since the frequency (and hence the energy) of the photon depends on the time inter-
val, we can write, from Eq. (2.13):

λ∞ =
(

1− 2GM

rc2

)−1/2

λ. (2.14)

Since the redshift is:

z= λ∞ − λ
λ

, (2.15)
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Fig. 2.1 Space-time diagram
in Schwarzschild coordinates
showing the light cones of
events at different distances
from the event horizon.
Adapted form Carroll (2003)

then

1+ z=
(

1− 2GM

rc2

)−1/2

, (2.16)

and we see that when r → rSchw the redshift becomes infinite. This means that a
photon needs infinite energy to escape from inside the region determined by rSchw.
Events that occur at r < rSchw are disconnected from the rest of the universe. Hence,
we call the surface determined by r = rSchw an event horizon. Whatever crosses the
event horizon will never return. This is the origin of the expression “black hole”,
introduced by John A. Wheeler in the mid 1960s. The black hole is the region of
space-time inside the event horizon. We can see in Fig. 2.1 what happens with the
light cones as an event is closer to the horizon of a Schwarzschild black hole. The
shape of the cones can be calculated from the metric (2.10) imposing the null con-
dition ds2 = 0. Then,

dr

dt
=±

(
1− 2GM

r

)
, (2.17)

where we made c = 1. Notice that when r →∞, dr/dt →±1, as in Minkowski
space-time. When r→ 2GM , dr/dt → 0, and light moves along the surface r =
2GM , which is consequently a null surface. For r < 2GM , the sign of the derivative
is inverted. The inward region of r = 2GM is time-like for any physical system that
has crossed the boundary surface.

What happens to an object when it crosses the event horizon? According to
Eq. (2.10), there is a singularity at r = rSchw. The metric coefficients, however,
can be made regular by a change of coordinates. For instance we can consider
Eddington-Finkelstein coordinates. Let us define a new radial coordinate r∗ such
that radial null rays satisfy d(ct ± r∗)= 0. Using Eq. (2.10) it can be shown that:

r∗ = r + 2GM

c2
log

∣∣∣∣
r − 2GM/c2

2GM/c2

∣∣∣∣.

Then, we introduce:

v = ct + r∗.
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Fig. 2.2 Space-time diagram in Eddington-Finkelstein coordinates showing the light cones close
to and inside a black hole. Here, r = 2GM/c2 = rSchw is the Schwarzschild radius where the event
horizon is located. Adapted form Townsend (1997)

The new coordinate v can be used as a time coordinate replacing t in Eq. (2.10).
This yields:

ds2 =
(

1− 2GM

rc2

)(
c2dt2 − dr2∗

)− r2dΩ2

or

ds2 =
(

1− 2GM

rc2

)
dv2 − 2drdv− r2dΩ2, (2.18)

where

dΩ2 = dθ2 + sin2 θdφ2.

Notice that in Eq. (2.18) the metric is non-singular at r = 2GM/c2. The only real
singularity is at r = 0, since there the Riemann tensor diverges. In order to plot the
space-time in a (t, r)-plane, we can introduce a new time coordinate ct∗ = v − r .
From the metric (2.18) or from Fig. 2.2 we see that the line r = rSchw, θ = constant,
and φ = constant is a null ray, and hence, the surface at r = rSchw is a null surface.
This null surface is an event horizon because inside r = rSchw all cones have r = 0
in their future (see Fig. 2.2). The object in r = 0 is the source of the gravitational
field and is called the singularity. We shall say more about it in Sect. 3.6. For the
moment, we only remark that everything that crosses the event horizon will end at
the singularity. This is the inescapable fate for everything inside a Schwarzschild
black hole. There is no way to avoid it: in the future of every event inside the event



40 2 Black Holes

Fig. 2.3 Embedding
space-time diagram in
Eddington-Finkelstein
coordinates showing the light
cones of events at different
distances from a
Schwarzschild black hole.
From http://www.oglethorpe.
edu/faculty/~m_rulison/
ChangingViews/Lecture7.htm

horizon is the singularity. There is no escape, no hope, no freedom, inside the black
hole. There is just the singularity, whatever such a thing might be.

We see now that the name “black hole” is not strictly correct for space-time re-
gions isolated by event horizons. There is no hole to other place. Whatever falls
into the black hole, goes to the singularity. The central object increases its mass and
energy with the accreted bodies and fields, and then the event horizon grows. This
would not happen if what falls into the hole were able to pass through, like through
a hole in a wall. A black hole is more like a space-time precipice, deep, deadly,
and with something unknown at the bottom. A graphic depiction with an embed-
ding diagram of a Schwarzschild black hole is shown in Fig. 2.3. An embedding
is an immersion of a given manifold into a manifold of lower dimensionality that
preserves the metric properties.

2.3.2 Birkhoff’s Theorem

If we consider the isotropic but not static line element,

ds2 = c2A(r, t)dt2 −B(r, t)dr2 − r2dΩ2, (2.19)

and substitute it into Einstein’s empty-space field equations Rμν = 0 to obtain the
functions A(r, t) and B(r, t), the result would be exactly the same:

A(r, t)=A(r)=
(

1− 2GM

rc2

)
,

and

B(r, t)= B(r)=
(

1− 2GM

rc2

)−1

.

This result is general and known as Birkhoff’s theorem:

http://www.oglethorpe.edu/faculty/~m_rulison/ChangingViews/Lecture7.htm
http://www.oglethorpe.edu/faculty/~m_rulison/ChangingViews/Lecture7.htm
http://www.oglethorpe.edu/faculty/~m_rulison/ChangingViews/Lecture7.htm
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The space-time geometry outside a general spherically symmetric matter distribution is the
Schwarzschild geometry.

Birkhoff’s theorem implies that strictly radial motions do not perturb the space-
time metric. In particular, a pulsating star, if the pulsations are strictly radial, does
not produce gravitational waves.

The converse of Birkhoff’s theorem is not true, i.e.,

If the region of space-time is described by the metric given by expression (2.10), then the
matter distribution that is the source of the metric does not need to be spherically symmetric.

2.3.3 Orbits

Orbits around a Schwarzschild black hole can be easily calculated using the metric
and the relevant symmetries (see. e.g. Raine and Thomas 2005; Frolov and Zelnikov
2011). Let us call kμ a vector in the direction of a given symmetry (i.e. kμ is a
Killing vector). A static situation is symmetric in the time direction, hence we can
write kμ = (1,0,0,0). The 4-velocity of a particle with trajectory xμ = xμ(τ) is
uμ = dxμ/dτ . Then, since u0 =E/c, where E is the energy, we have:

gμνk
μuν = g00k

0u0 = g00u
0 = η00

E

c
= E
c
= constant. (2.20)

If the particle moves along a geodesic in a Schwarzschild space-time, we obtain
from Eq. (2.20):

c

(
1− 2GM

c2r

)
dt

dτ
= E
c
. (2.21)

Similarly, for the symmetry in the azimuthal angle φ we have kμ = (0,0,0,1),
in such a way that:

gμνk
μuν = g33k

3u3 = g33u
3 =−L= constant. (2.22)

In the Schwarzschild metric we find, then,

r2 dφ

dτ
= L= constant. (2.23)

If we now divide the Schwarzschild interval (2.10) by c2dτ 2 we get

1=
(

1− 2GM

c2r

)(
dt

dτ

)2

− c−2
(

1− 2GM

c2r

)−1(
dr

dτ

)2

− c−2r2
(
dφ

dτ

)2

, (2.24)

and using the conservation equations (2.21) and (2.23) we obtain:

(
dr

dτ

)2

= E
2

c2
−
(
c2 + L

2

r2

)(
1− 2GM

c2r

)
. (2.25)
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Fig. 2.4 General relativistic effective potential plotted for several values of angular momentum

Then, expressing the energy in units of mc2 and introducing an effective potential
Veff,

(
dr

dτ

)2

= E
2

c2
− V 2

eff. (2.26)

For circular orbits of a massive particle we have the conditions

dr

dτ
= 0 and

d2r

dτ 2
= 0.

The orbits are possible only at the turning points of the effective potential:

Veff =
√(
c2 + L

2

r2

)(
1− 2rg

r

)
, (2.27)

where L is the angular momentum in units of mc and rg =GM/c2 is the gravita-
tional radius. Then,

r = L2

2crg
± 1

2

√
L4

c2r2
g
− 12L2. (2.28)

The effective potential is shown in Fig. 2.4 for different values of the angular mo-
mentum.

ForL2 > 12c2r2
g there are two solutions. The negative sign corresponds to a max-

imum of the potential and is unstable. The positive sign corresponds to a minimum,
which is, consequently, stable. At L2 = 12c2r2

g there is a single stable orbit. It is the
innermost marginally stable orbit, and it occurs at r = 6rg = 3rSchw. The specific
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angular momentum of a particle in a circular orbit at r is:

L= c
(

rgr

1− 3rg/r

)1/2

.

Its energy (units of mc2) is:

E =
(

1− 2rg
r

)(
1− 3rg

r

)−1/2

.

The proper and observer’s periods are:

τ = 2π

c

(
r3

rg

)1/2(
1− 3rg

r

)1/2

and

T = 2π

c

(
r3

rg

)1/2

.

Notice that when r→ 3rg both L and E tend to infinity, so only massless particles
can orbit at such a radius.

The local velocity at r of an object falling from rest to the black hole is (e.g.
Raine and Thomas 2005):

vloc = proper distance

proper time
= dr

(1− 2GM/c2r)dt
.

Hence, using the expression for dr/dt from the metric (2.10)

dr

dt
=−c

(
2GM

c2r

)1/2(
1− 2GM

c2r

)
, (2.29)

we have,

vloc =
(

2rg
r

)1/2

(in units of c). (2.30)

Then, the differential acceleration the object will experience along an element dr
is:2

dg = 2rg
r3
c2dr. (2.31)

The tidal acceleration on a body of finite size Δr is simply (2rg/r3)c2Δr . This
acceleration and the corresponding force becomes infinite at the singularity. As the
object falls into the black hole, tidal forces act to tear it apart. This painful process is

2Notice that dvloc/dτ = (dvloc/dr)(dr/dτ)= (dvloc/dr)vloc = rgc2/r2.
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known as “spaghettification”. The process can last significant long before the object
crosses the event horizon, depending on the mass of the black hole.

The energy of a particle in the innermost stable orbit can be obtained from the
above equation for the energy setting r = 6rg. This yields (units of mc2):

E =
(

1− 2rg
6rg

)(
1− 3rg

6rg

)−1/2

= 2

3

√
2.

Since a particle at rest at infinity has E = 1, then the energy that the particle should
release to fall into the black hole is 1− (2/3)√2= 0.057. This means 5.7 % of its
rest mass energy, significantly higher than the energy release that can be achieved
through nuclear fusion.

An interesting question is what is the gravitational acceleration at the event hori-
zon as seen by an observer from infinity. The acceleration relative to a hovering
frame system of a freely falling object at rest at r is (Raine and Thomas 2005):

gr =−c2
(
GM/c2

r2

)(
1− 2GM/c2

r

)−1/2

.

So, the energy spent to move the object a distance dl will be dEr = mgrdl. The
energy expended respect to a frame at infinity is dE∞ = mg∞dl. Because of the
conservation of energy, both quantities should be related by a redshift factor:

Er

E∞
= gr

g∞
=
(

1− 2GM/c2

r

)−1/2

.

Hence, using the expression for gr we get:

g∞ = c2GM/c
2

r2
. (2.32)

Notice that for an observer at r , gr→∞ when r→ rSchw. From infinity, however,
the required force to hold the object hovering at the horizon is

mg∞ = c2GmM/c
2

r2
Schw

= mc4

4GM
.

This is the surface gravity of the black hole.

2.3.4 Radial Motion of Photons

In the case of photons we have that ds2 = 0. The radial motion, then, satisfies:

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 = 0. (2.33)
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From here,

dr

dt
=±c

(
1− 2GM

rc2

)
. (2.34)

Integrating, we have:

ct = r + 2GM

c2
ln

∣∣∣∣
rc2

2GM
− 1

∣∣∣∣+ constant outgoing photons, (2.35)

ct = −r − 2GM

c2
ln

∣∣∣∣
rc2

2GM
− 1

∣∣∣∣+ constant incoming photons. (2.36)

Notice that in a (ct, r)-diagram the photons have world-lines with slopes ±1 as
r→∞, indicating that space-time is asymptotically flat. As the events that generate
the photons approach to r = rSchw, the slopes tend to ±∞. This means that the
light cones become thinner and thinner for events close to the event horizon. At
r = rSchw the photons cannot escape and they move along the horizon (see Fig. 2.1).
An observer in the infinity will never detect them.

2.3.5 Circular Motion of Photons

In this case, fixing θ = constant due to the symmetry, we have that photons will
move in a circle of r = constant and ds2 = 0. Then, from (2.10), we have:

(
1− 2GM

rc2

)
c2dt2 − r2dφ2 = 0. (2.37)

This means that

φ̇ = c
r

√(
1− 2GM

rc2

)
= constant.

The circular velocity is:

vcirc = rφ̇√
g00

= Ωr

(1− 2GM/c2r)1/2
. (2.38)

Setting vcirc = c for photons and using Ω = (GM/r3)1/2, we get that the only pos-
sible radius for a circular photon orbit is:

rph = 3GM

c2
. (2.39)

For a compact object of 1M�, rph ≈ 4.5 km, in comparison with the Schwarzschild
radius of 3 km. Photons moving at this distance form the “photosphere” of the black
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hole. The orbit, however, is unstable, as it can be seen from the effective potential:

Veff =
L2

ph

r2

(
1− 2rg

r

)
. (2.40)

Notice that the four-acceleration for circular motion is aμ = uμuν;ν . The radial
component in the Schwarzschild metric is:

ar = GM/r2 −Ω2r

1− 2GM/c2r −Ω2r2/c2
. (2.41)

The circular motion along a geodesic line corresponds to the case ar = 0 (free mo-
tion). This gives from Eq. (2.41) the usual expression for the Keplerian angular
velocity

ΩK =
(
GM

r3

)1/2

,

already used in deriving rph. The angular velocity, however, can have any value de-
termined by the metric and can be quite different from the corresponding Keplerian
value. In general:

v = rΩK

(1− 2GM/c2r)1/2
=
(
GM

r

)1/2(
1− 2GM

c2r

)−1/2

. (2.42)

From this latter equation and the fact that v ≤ c it can be concluded that pure Keple-
rian motion is only possible for r ≥ 1.5rSchw. At r ≤ 1.5rSchw any massive particle
will find its mass increased by special relativistic effects in such a way that the
gravitational attraction will outweigh any centrifugal force.

2.3.6 Gravitational Capture

A particle coming from infinity is captured if its trajectory ends in the black hole.
The angular momentum of a non-relativistic particle with velocity v∞ at infinity is
L=mv∞b, where b is an impact parameter. The condition L/mcrSchw = 2 defines
bcr,non-rel = 2rSchw(c/v∞). Then, the capture cross section is:

σnon-rel = πb2
cr = 4π

c2r2
Schw

v2∞
. (2.43)

For an ultra-relativistic particle, bcr = 3
√

3rSchw/2, and then

σrel = πb2
cr =

27

4
πr2

Schw. (2.44)
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2.3.7 Other Coordinate Systems

Other coordinates can be introduced to study additional properties of black holes.
We refer the reader to the books of Frolov and Novikov (1998), Raine and Thomas
(2005), and Frolov and Zelnikov (2011) for further details. Here we shall only intro-
duce the Kruskal-Szekeres coordinates. These coordinates have the advantage that
they cover the entire space-time manifold of the maximally extended Schwarzschild
solution and are well-behaved everywhere outside the physical singularity. They al-
low to remove the non-physical singularity at r = rSchw and provide new insights
on the interior solution, on which we shall return later.

Let us consider the following coordinate transformation:

u=
(

r

rSchw
− 1

)1/2

e
r

2rSchw cosh

(
ct

2rSchw

)
,

v =
(

r

rSchw
− 1

)1/2

e
r

2rSchw sinh

(
ct

2rSchw

)
, (2.45)

if r > rSchw,

and

u=
(

1− r

rSchw

)1/2

e
r

2rSchw sinh

(
ct

2rSchw

)
,

v =
(

1− r

rSchw

)1/2

e
r

2rSchw cosh

(
ct

2rSchw

)
, (2.46)

if r < rSchw.

The line element in the Kruskal-Szekeres coordinates is completely regular, ex-
cept at r = 0:

ds2 = 4r3
Schw

r
e

r
rSchw

(
dv2 − du2)− r2dΩ2. (2.47)

The curves at r = constant are hyperbolic and satisfy:

u2 − v2 =
(

r

rSchw
− 1

)1/2

e
r

rSchw , (2.48)

whereas the curves at t = constant are straight lines that pass through the origin:

u

v
= tanh

ct

2rSchw
, r < rSchw,

u

v
= coth

ct

2rSchw
, r > rSchw.

(2.49)
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Fig. 2.5 The Schwarzschild
metric in Kruskal-Szekeres
coordinates (c= 1)

In Fig. 2.5 we show the Schwarzschild space-time in Kruskal-Szekeres coordi-
nates. Each hyperbola represents a set of events of constant radius in Schwarzschild
coordinates. A radial worldline of a photon in this diagram (ds = 0) is represented
by a straight line forming an angle of±45◦with the u axis. A time-like trajectory has
always a slope larger than that of 45◦; and a space-like one, a smaller slope. A par-
ticle falling into the black hole crosses the line at 45◦ and reaches the future singu-
larity at r = 0. For an external observer this occurs in an infinite time. The Kruskal-
Szekeres coordinates have the useful feature that outgoing null geodesics are given
by u= constant, whereas ingoing null geodesics are given by v = constant. Further-
more, the (future and past) event horizon(s) are given by the equation uv = 0, and
the curvature singularity is given by the equation uv = 1.

A closely related diagram is the so-called Penrose or Penrose-Carter diagram.
This is a two-dimensional diagram that captures the causal relations between dif-
ferent points in space-time. It is an extension of a Minkowski diagram (light cone)
where the vertical dimension represents time, and the horizontal dimension repre-
sents space, and slanted lines at an angle of 45◦ correspond to light rays. The biggest
difference with a Minkowski diagram is that, locally, the metric on a Penrose dia-
gram is conformally equivalent3 to the actual metric in space-time. The conformal
factor is chosen such that the entire infinite space-time is transformed into a Pen-
rose diagram of finite size. For spherically symmetric space-times, every point in
the diagram corresponds to a 2-sphere. In Fig. 2.6 we show a Penrose diagram of a
Minkowskian space-time.

This type of diagrams can be applied to Schwarzschild black holes. The result
is shown in Fig. 2.7. The trajectory represents a particle that goes from some point

3We remind that two geometries are conformally equivalent if there exists a conformal transfor-
mation (an angle-preserving transformation) that maps one geometry to the other. More generally,
two (pseudo) Riemannian metrics on a manifold M are conformally equivalent if one is obtained
from the other through multiplication by a function on M .
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Fig. 2.6 Penrose diagram of
a Minkowskian space-time

Fig. 2.7 Penrose diagram of
a Schwarzschild black hole

in our universe into the black hole, ending in the singularity. Notice that there is
a mirror extension, also present in the Kruskal-Szekeres diagram, representing a
white hole and a parallel, but inaccessible universe. A white hole presents a naked
singularity. These type of extensions of solutions of Einstein’s field equations will
be discussed later.

Now, we turn to axially symmetric (rotating) solutions of the field equations.

2.4 Kerr Black Holes

A Schwarzschild black hole does not rotate. The solution of the field equations
(1.36) for a rotating body of mass M and angular momentum per unit mass a was
found by Roy Kerr (1963):

ds2 = gttdt2 + 2gtφdtdφ − gφφdφ2 −ΣΔ−1dr2 −Σdθ2 (2.50)
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gtt =
(
c2 − 2GMrΣ−1) (2.51)

gtφ = 2GMac−2Σ−1r sin2 θ (2.52)

gφφ =
[(
r2 + a2c−2)2 − a2c−2Δ sin2 θ

]
Σ−1 sin2 θ (2.53)

Σ ≡ r2 + a2c−2 cos2 θ (2.54)

Δ ≡ r2 − 2GMc−2r + a2c−2. (2.55)

This is the Kerr metric in Boyer-Lindquist coordinates (t, r, θ,φ), which reduces
to Schwarzschild metric for a = 0. In Boyer-Lindquist coordinates the metric is
approximately Lorentzian at infinity (i.e. we have a Minkowski space-time in the
usual coordinates of Special Relativity).

The element gtφ no longer vanishes. Even at infinity this element remains (hence
we wrote approximately Lorentzian above). The Kerr parameter ac−1 has dimen-
sions of length. The larger the ratio of this scale to GMc−2 (the spin parameter
a∗ ≡ ac/GM), the more aspherical the metric. Schwarzschild’s black hole is the
special case of Kerr’s for a = 0. Notice that, with the adopted conventions, the an-
gular momentum J is related to the parameter a by:

J =Ma. (2.56)

Just as the Schwarzschild solution is the unique static vacuum solution of
Eqs. (1.36) (a result called Israel’s theorem), the Kerr metric is the unique stationary
axisymmetric vacuum solution (Carter-Robinson theorem).

The horizon, the surface which cannot be crossed outward, is determined by the
condition grr→∞ (Δ= 0). It lies at r = rout

h where

rout
h ≡GMc−2 + [(

GMc−2)2 − a2c−2]1/2
. (2.57)

Indeed, the track r = rout
h , θ = constant with dφ/dτ = a(r2

h + a2)−1dt/dτ has
ds = 0 (it represents a photon circling azimuthally on the horizon, as opposed
to hovering at it). Hence the surface r = rout

h is tangent to the local light cone.
Because of the square root in Eq. (2.57), the horizon is well defined only for
a∗ = ac/GM ≤ 1. An extreme (i.e. maximally rotating) Kerr black hole has a spin
parameter a∗ = 1. Notice that for (GMc−2)2 − a2c−2 > 0 we have actually two
horizons. The second, the inner horizon, is located at:

r inn
h ≡GMc−2 − [(

GMc−2)2 − a2c−2]1/2
. (2.58)

This horizon is not seen by an external observer, but it hides the singularity to any
observer that has already crossed rh and is separated from the rest of the universe.
For a = 0, r inn

h = 0 and rout
h = rSchw. The case (GMc−2)2− a2c−2 < 0 corresponds

to no horizons and it is thought to be unphysical.
A study of the orbits around a Kerr black hole is beyond the limits of the present

text (the reader is referred to Frolov and Novikov 1998; Pérez et al. 2013), but
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we shall mention several interesting features. One is that if a particle initially falls
radially with no angular momentum from infinity to the black hole, it gains angular
motion during the infall. The angular velocity as seen from a distant observer is:

Ω(r, θ)= dφ
dt
= (2GM/c2)ar

(r2 + a2c−2)2 − a2c−2Δ sin2 θ
. (2.59)

The particle will acquire angular velocity in the direction of the spin of the black
hole. As the black hole is approached, the particle will find an increasing tendency
to get carried away in the same sense in which the black hole is rotating. To keep
the particle stationary with respect to the distant stars, it will be necessary to apply
a force against this tendency. The closer the particle will be to the black hole, the
stronger the force. At a point re it becomes impossible to counteract the rotational
sweeping force. The particle is in a kind of space-time maelstrom. The surface deter-
mined by re is the static limit: from there in, you cannot avoid rotating. Space-time
is rotating here in such a way that you cannot do anything in order to not co-rotate
with it. You can still escape from the black hole, since the outer event horizon has not
been crossed, but rotation is inescapable. The region between the static limit and the
event horizon is called the ergosphere. The ergosphere is not spherical but its shape
changes with the latitude θ . It can be determined through the condition gtt = 0.
Consider a stationary particle, r = constant, θ = constant, and φ = constant. Then:

c2 = gtt
(
dt

dτ

)2

. (2.60)

When gtt ≤ 0 this condition cannot be fulfilled, and hence a massive particle
cannot be stationary inside the surface defined by gtt = 0. For photons, since ds =
cdτ = 0, the condition is satisfied at the surface. Solving gtt = 0 we obtain the shape
of the ergosphere:

re = GM
c2

+ 1

c2

(
G2M2 − a2c2 cos2 θ

)1/2
. (2.61)

The static limit lies outside the horizon except at the poles where both surfaces
coincide. The phenomenon of “frame dragging” is common to all axially symmetric
metrics with gtφ �= 0.

Roger Penrose (1969) suggested that a projectile thrown from outside into the
ergosphere begins to rotate acquiring more rotational energy than it originally had.
Then the projectile can break up into two pieces, one of which will fall into the
black hole, whereas the other can go out of the ergosphere. The piece coming out
will then have more energy than the original projectile. In this way, we can extract
energy from a rotating black hole. In Fig. 2.8 we illustrate the situation and show
the static limit, the ergosphere and the outer/inner horizons of a Kerr black hole.

The innermost marginally stable circular orbit rms around an extreme rotating
black hole (ac−1 =GM/c2) is given by Raine and Thomas (2005):

(
rms

GM/c2

)2

− 6

(
rms

GM/c2

)
± 8

(
rms

GM/c2

)1/2

− 3= 0. (2.62)
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Fig. 2.8 Left: a rotating black hole and the Penrose process. From Luminet (1998). Right: sketch
of the interior of a Kerr black hole

For the “+” sign this is satisfied by rms = GM/c2, whereas for the “−‘” sign the
solution is rms = 9GM/c2. The first case corresponds to a co-rotating particle and
the second one to a counter-rotating particle. The energy of the co-rotating particle
in the innermost orbit is 1/

√
3 (units of mc2). The binding energy of a particle

in an orbit is the difference between the orbital energy and its energy at infinity.
This means a binding energy of 42 % of the rest energy at infinity! For the counter-
rotating particle, the binding energy is 3.8 %, smaller than for a Schwarzschild black
hole.

An essential singularity occurs when gtt→∞; this happens if Σ = 0. This con-
dition implies:

r2 + a2c−2 cos2 θ = 0. (2.63)

Such a condition is fulfilled only by r = 0 and θ = π
2 . This translates in Cartesian

coordinates to:4

x2 + y2 = a2c−2 and z= 0. (2.64)

The singularity is a ring of radius ac−1 on the equatorial plane. If a = 0, then
Schwarzschild’s point-like singularity is recovered. If a �= 0 the singularity is not
necessarily in the future of all events at r < r inn

h : the singularity can be avoided by
some geodesics.

4The relation with Boyer-Lindquist coordinates is z = r cos θ , x = √r2 + a2c−2 sin θ cosφ, y =√
r2 + a2c−2 sin θ sinφ.
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2.4.1 Pseudo-Newtonian Potentials for Black Holes

The full effective general relativistic potential for particle orbits around a Kerr black
hole is quite complex. Instead, pseudo-Newtonian potentials can be used. The first of
such potentials, derived by Bohdam Paczyński and used by first time by Paczyński
and Wiita (1980), for a non-rotating black hole with mass M , is:

Φ =− GM

r − 2rg
, (2.65)

where as before rg =GM/c2 is the gravitational radius. With this potential one can
use Newtonian theory and obtain the same behavior of the Keplerian circular orbits
of free particles as in the exact theory: orbits with r < 9rg are unstable, and orbits
with r < 6rg are unbound. However, velocities of material particles obtained with
the potential (2.65) are not accurate, since special relativistic effects are not included
(Abramowicz et al. 1996). The velocity vp−N calculated with the pseudo-Newtonian
potential should be replaced by the corrected velocity vcorr

p−N such that

vp−N = vcorr
p−Nγ

corr
p−N, γ corr

p−N =
1√

1− ( vcorr
p−N
c

)2
. (2.66)

This re-scaling works amazingly well (see Abramowicz et al. 1996) compared with
the actual velocities. The agreement with General Relativity is better than 5 %.

For the Kerr black hole, a pseudo-Newtonian potential was found by Semerák
and Karas (1999). It can be found in the expression (19) of their paper. However,
the use of this potential is almost as complicated as dealing with the full effective
potential of the Kerr metric in General Relativity.

2.5 Reissner-Nordström Black Holes

The Reissner-Nordström metric is a spherically symmetric solution of Eqs. (1.36).
However, it is not a vacuum solution, since the source has an electric chargeQ, and
hence there is an electromagnetic field. The energy-momentum tensor of this field
is:

Tμν =−μ−1
0

(
FμρF

ρ
ν −

1

4
gμνFρσF

ρσ

)
, (2.67)

where Fμν = ∂μAν − ∂νAμ is the electromagnetic field strength tensor and Aμ is
the electromagnetic 4-potential. Outside the charged object the 4-current jμ is zero,
so Maxwell’s equations are:

F
μν

;μ = 0, (2.68)

Fμν;σ + Fσμ;ν + Fνσ ;μ = 0. (2.69)
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Einstein’s and Maxwell’s equations are coupled since Fμν enters into the gravi-
tational field equations through the energy-momentum tensor and the metric gμν
enters into the electromagnetic equations through the covariant derivative. Because
of the symmetry constraints we can write:

[
Aμ

]=
(
ϕ(r)

c2
, a(r),0,0

)
, (2.70)

where ϕ(r) is the electrostatic potential, and a(r) is the radial component of the
3-vector potential as r→∞.

The solution for the metric is given by

ds2 =Δc2dt2 −Δ−1dr2 − r2dΩ2, (2.71)

where

Δ= 1− 2GM/c2

r
+ q

2

r2
. (2.72)

In this expression, M is once again interpreted as the mass of the hole and

q = GQ2

4πε0c4
(2.73)

is related to the total electric charge Q.
The metric has a coordinate singularity at Δ= 0, in such a way that:

r± = rg ±
(
r2

g − q2)1/2
. (2.74)

Here, rg = GM/c2 is the gravitational radius. For rg = q , we have an extreme
Reissner-Nordström black hole with a unique horizon at r = rg. Notice that a
Reissner-Nordström black hole can be more compact than a Schwarzschild black
hole of the same mass. For the case r2

g > q
2, both r± are real and there are two hori-

zons as in the Kerr solution. Finally, in the case r2
g < q

2 both r± are imaginary there
is no coordinate singularities, no horizon hides the intrinsic singularity at r = 0. It
is thought, however, that naked singularities do not exist in Nature (see Sect. 3.6
below).

2.6 Kerr-Newman Black Holes

The Kerr-Newman metric of a charged spinning black hole is the most general black
hole solution. It was found by Ezra “Ted” Newman in 1965 (Newman et al. 1965).
This metric can be obtained from the Kerr metric (2.50) in Boyer-Lindquist coordi-
nates with the replacement:

2GM

c2
r −→ 2GM

c2
r − q2,

where q is related to the charge Q by Eq. (2.73).
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The full expression reads:

ds2 = gttdt2 + 2gtφdtdφ − gφφdφ2 −ΣΔ−1dr2 −Σdθ2 (2.75)

gtt = c2[1− (
2GMrc−2 − q2)Σ−1] (2.76)

gtφ = a sin2 θΣ−1(2GMrc−2 − q2) (2.77)

gφφ =
[(
r2 + a2c−2)2 − a2c−2Δ sin2 θ

]
Σ−1 sin2 θ (2.78)

Σ ≡ r2 + a2c−2 cos2 θ (2.79)

Δ ≡ r2 − 2GMc−2r + a2c−2 + q2 ≡ (
r − rout

h

)(
r − r inn

h

)
, (2.80)

where all symbols have the same meaning as in the Kerr metric and the outer horizon
is located at

rout
h =GMc−2 + [(

GMc−2)2 − a2c−2 − q2]1/2
. (2.81)

The inner horizon is located at:

r inn
h =GMc−2 − [(

GMc−2)2 − a2c−2 − q2]1/2
. (2.82)

The Kerr-Newman solution is a non-vacuum solution either. It shares with the
Kerr and Reissner-Nordström solutions the existence of two horizons, and as the
Kerr solution it presents an ergosphere. At a latitude θ , the radial coordinate for the
ergosphere is:

re =GMc−2 + [(
GMc−2)2 − a2c−2 cos2 θ − q2]1/2

. (2.83)

Like the Kerr metric for an uncharged rotating mass, the Kerr-Newman interior
solution exists mathematically but is probably not representative of the actual met-
ric of a physically realistic rotating black hole due to stability problems (see next
chapter). The surface area of the horizon is:

A= 4π
(
rout2

h + a2c−2). (2.84)

The Kerr-Newman metric represents the simplest stationary, axisymmetric,
asymptotically flat solution of Einstein’s equations in the presence of an electro-
magnetic field in four dimensions. It is sometimes referred to as an “electrovac-
cuum” solution of Einstein’s equations. Any Kerr-Newman source has its rotation
axis aligned with its magnetic axis (Punsly 1998a). Thus, a Kerr-Newman source is
different from commonly observed astronomical bodies, for which there might be a
substantial angle between the rotation axis and the magnetic moment.

Since the electric field cannot remain static in the ergosphere, a magnetic field
is generated as seen by an observer outside the static limit. This is illustrated in
Fig. 2.9. You can find the expressions for the components of the fields in Punsly
(2001).

Pekeris and Frankowski (1987) have calculated the interior electromagnetic field
of the Kerr-Newman source, i.e., the ring singularity. The electric and magnetic
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Fig. 2.9 The electric (solid)
and magnetic (dashed) field
lines of a Kerr-Newman black
hole. The rotation axis of the
hole is indicated

Fig. 2.10 Magnetic field of a
Kerr-Newman source. See
text for units. Reprinted figure
with permission from Pekeris
and Frankowski (1987).
Copyright (1987) by the
American Physical Society

fields are shown in Figs. 2.10 and 2.11, in a (λ, z)-plane, with λ= (x2+y2)1/2. The
general features of the magnetic field are that at distances much larger than ac−1 it
resembles closely a dipole field, with a dipolar magnetic moment μd =Qac−1. On
the disc of radius ac−1 the z-component of the field vanishes, in contrast with the
interior of Minkowskian ring-current models. The electric field for a positive charge
distribution is attractive for positive charges toward the interior disc. At the ring
there is a charge singularity and at large distances the field corresponds to that of a
point-like charge Q.
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Fig. 2.11 Electric field of a
Kerr-Newman source. See
text for units. Reprinted figure
with permission from Pekeris
and Frankowski (1987).
Copyright (1987) by the
American Physical Society

Fig. 2.12 Charged and
rotating black hole
magnetosphere. The black
hole has charge +Q whereas
the current ring circulating
around it has opposite charge.
The figure shows (units
G= c= 1) the region of
closed lines determined by
the light cylinder, the open
lines that drive a
magnetohydrodynamical
wind, and the vacuum region
in between. Adapted from
Punsly (1998a). Reproduced
by permission of the AAS

Charged black holes might be a natural result from charge separation during the
gravitational collapse of a star. It is thought that an astrophysical charged object
would discharge quickly by accretion of charges of opposite sign. There remains
the possibility, however, that the charge separation could lead to a configuration
where the black hole has a charge and a superconducting ring around it would have
the same but opposite charge, in such a way the whole system seen from infinity is
neutral. In such a case a Kerr-Newman black hole might survive for some time, de-
pending on the environment. For further details, the reader is referred to the highly
technical book by Brian Punsly (2001) and related articles (Punsly 1998a, 1998b,
and Punsly et al. 2000). In Figs. 2.12 and 2.13 the magnetic field around a Kerr-
Newman black hole surrounded by a charged current ring is shown. The opposite
charged black hole and ring are the minimum energy configuration for the system
black hole plus magnetosphere. Since the system is neutral from the infinity, it dis-
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Fig. 2.13 Three different scales of the Kerr-Newman black hole model developed by Brian Punsly.
From Punsly (1998a). Reproduced by permission of the AAS

charges slowly and can survive for a few thousand years. During this period, the
source can be active through the capture of free electrons from the environment
and the production of gamma rays by inverse Compton up-scattering of synchrotron
photons produced by electrons accelerated in the polar gap of the hole. In Fig. 2.14
we show the corresponding spectral energy distribution obtained by Punsly et al.
(2000) for such a configuration of Kerr-Newman black hole magnetosphere.

2.6.1 Einstein-Maxwell Equations

In order to determine the gravitational and electromagnetic fields over a region of a
space-time we have to solve the Einstein-Maxwell equations:
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Fig. 2.14 The spectral
energy distribution resulting
from a Kerr-Newman black
hole slowly accreting from
the interstellar medium. From
Punsly et al. (2000),
reproduced with permission
©ESO

Rμν − 1

2
Rgμν +Λgμν =−8πG

c4
(Tμν +Eμν), (2.85)

4π

c
Eμν =−FμρFρν +

1

4
δμν F

σλFσλ, (2.86)

Fμν =Aμ;ν −Aν;μ, (2.87)

Fν;νμ = 4π

c
Jμ. (2.88)

Here Tμν and Eμν are the energy-momentum tensors of matter and electromag-
netic fields, Fμν and Jμ are the electromagnetic field and current density, Aμ is the
4-dimensional potential, and Λ is the cosmological constant.

The solution of this system of equations is non-trivial since they are coupled.
The electromagnetic field is a source of the gravitational field and this field enters
into the electromagnetic equations through the covariant derivatives indicated by
the semi-colons. For an exact and relevant solution of the problem see Manko and
Sibgatullin (1992).

2.7 Other Black Holes

2.7.1 Born-Infeld Black Holes

Born and Infeld (1934) to avoid the singularities associated with charged point par-
ticles in Maxwell theory. Almost immediately, Hoffmann (1935) coupled General
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Relativity with Born-Infeld electrodynamics to obtain a spherically symmetric solu-
tion representing the gravitational field of a charged object. This solution, forgotten
during decades, can represent a charged black hole in nonlinear electrodynamics. In
Born-Infeld electrodynamics the trajectories of photons in curved space-times are
not null geodesics of the background metric. Instead, they follow null geodesics of
an effective geometry determined by the nonlinearities of the electromagnetic field.

The action of Einstein gravity coupled to Born-Infeld electrodynamics has the
form (in this section we adopt, for simplicity, c=G= 4πε0 = (4π)−1μ0 = 1):

S =
∫
dx4√−g

(
R

16π
+LBI

)
, (2.89)

with

LBI = 1

4πb2

(
1−

√
1+ 1

2
FσνFσνb2 − 1

4
F̃σνF σνb4

)
, (2.90)

where g is the determinant of the metric tensor, R is the scalar of curvature,
Fσν = ∂σAν − ∂νAσ is the electromagnetic tensor, F̃σν = 1

2
√−gεαβσνFαβ is the

dual of Fσν (with εαβσν the Levi-Civita symbol), and b is a parameter that indi-
cates how much Born-Infeld and Maxwell electrodynamics differ. For b→ 0 the
Einstein-Maxwell action is recovered. The maximal possible value of the electric
field in this theory is b, and the self-energy of point charges is finite. The field equa-
tions can be obtained by varying the action with respect to the metric gσν and the
electromagnetic potential Aν .

We can write LBI in terms of the electric and magnetic fields:

LBI = b2

4π

[
1−

√
1− B

2 −E2

b2
− (E ·B)

2

b4

]
. (2.91)

The Lagrangian depends non-linearly of the electromagnetic invariants:

F = 1

4
FαβF

αβ = 1

2

(
B2 −E2), (2.92)

G̃ = 1

4
FαβF̃

αβ =−B ·E. (2.93)

Introducing the Hamiltonian formalism,

Pαβ = 2
∂L

∂Fαβ
= ∂L
∂F
Fαβ + ∂L

∂G̃
F̃ αβ, (2.94)

H = 1

2
PαβFαβ −L

(
F, G̃2), (2.95)

and adopting the notation

P = 1

4
PαβP

αβ, (2.96)
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Q̃= 1

4
PαβP̃

αβ, (2.97)

we can express Fαβ as a function of Pαβ , P , and Q̃:

Fαβ = 2
∂H

∂Pαβ
= ∂H
∂P
Pαβ + ∂H

∂Q̃
P̃ αβ. (2.98)

The Hamiltonian equations in the P and Q̃ formalism can be written as:

(
∂H

∂P
P̃ αβ + ∂H

∂Q̃
P αβ

)

,β

= 0. (2.99)

The coupled Einstein-Born-Infeld equations are:

4πTμν = ∂H
∂P
PμαP

α
ν − gμν

(
2P
∂H

∂P
+ Q̃∂H

∂Q̃
−H

)
, (2.100)

R = 8

(
P
∂H

∂P
+ Q̃∂H

∂Q̃
−H

)
. (2.101)

The field equations have spherically symmetric black hole solutions given by

ds2 =ψ(r)dt2 −ψ(r)−1dr2 − r2dΩ2, (2.102)

with

ψ(r)= 1− 2M

r
+ 2

b2r

∫ ∞

r

(√
x4 + b2Q2 − x2)dx, (2.103)

D(r)= QE
r2
, (2.104)

B(r)=QM sin θ, (2.105)

where M is the mass, Q2 =Q2
E +Q2

M is the sum of the squares of the electric QE
and magnetic QM charges, B(r) and D(r) are the magnetic and the electric induc-
tions in the local orthonormal frame. In the limit b→ 0, the Reissner-Nordström
metric is obtained. The metric (2.102) is also asymptotically Reissner-Nordström
for large values of r . With the units adopted above,M ,Q and b have dimensions of
length. The metric function ψ(r) can be expressed in the form

ψ(r)= 1− 2M

r
+ 2

3b2

{
r2 −

√
r4 + b2Q2

+
√|bQ|3
r

F

[
arccos

(
r2 − |bQ|
r2 + |bQ|

)
,

√
2

2

]}
, (2.106)
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where F(γ, k) is the elliptic integral of the first kind.5 As in Schwarzschild and
Reissner-Nordström cases, the metric (2.102) has a singularity at r = 0.

The zeros of ψ(r) determine the position of the horizons, which have to be ob-
tained numerically. For a given value of b, when the charge is small, 0≤ |Q|/M ≤
ν1, the function ψ(r) has one zero and there is a regular event horizon. For inter-
mediate values of charge, ν1 < |Q|/M < ν2, ψ(r) has two zeros, so there are, as
in the Reissner-Nordström geometry, an inner horizon and an outer regular event
horizon. When |Q|/M = ν2, there is one degenerate horizon. Finally, if the val-
ues of charge are large, |Q|/M > ν2, the function ψ(r) has no zeros and a naked
singularity is obtained. The values of |Q|/M where the number of horizons change,
ν1 = (9|b|/M)1/3[F(π,

√
2/2)]−2/3 and ν2, which should be calculated numerically

from the condition ψ(rh) = ψ ′(rh) = 0, are increasing functions of |b|/M . In the
Reissner-Nordström limit (b→ 0) it is easy to see that ν1 = 0 and ν2 = 1.

The paths of photons in nonlinear electrodynamics are not null geodesics of the
background geometry. Instead, they follow null geodesics of an effective metric
generated by the self-interaction of the electromagnetic field, which depends on the
particular nonlinear theory considered. In Einstein gravity coupled to Born-Infeld
electrodynamics the effective geometry for photons is given by Bretón (2002):

ds2
eff = ω(r)1/2ψ(r)dt2 −ω(r)1/2ψ(r)−1dr2 −ω(r)−1/2r2dΩ2, (2.107)

where

ω(r)= 1+ Q
2b2

r4
. (2.108)

Then, to calculate the deflection angle for photons passing near the black holes, it
is necessary to use the effective metric (2.107) instead of the background metric
(2.102). The horizon structure of the effective metric is the same as that of metric
(2.102), but the trajectories of photons are different.

2.7.2 Regular Black Holes

Solutions of Einstein’s field equations representing black holes where the metric
is always regular (i.e. free of intrinsic singularities where RμνρσRμνρσ diverges)
can be found for some choices of the equation of state. For instance, Mbonye and
Kazanas (2005) have suggested the following equation:

pr(ρ)=
[
α− (α + 1)

(
ρ

ρmax

)m](
ρ

ρmax

)1/n

ρ. (2.109)

5F(γ, k)= ∫ γ
0 (1− k2 sin2 φ)−1/2dφ = ∫ sinγ

0 [(1− z2)(1− k2z2)]−1/2dz.
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The maximum limiting density ρmax is concentrated in a region of radius

r0 =
√

1

Gρmax
. (2.110)

At low densities pr ∝ ρ1+1/n and the equation reduces to that of a polytrope gas. At
high densities close to ρmax the equation becomes pr =−ρ and the system behaves
as a gravitational field dominated by a cosmological term in the field equations. The
exact values of m, n, and α determine the sound speed in the system. Imposing that
the maximum sound speed cs = (dp/dρ)1/2 be finite everywhere, it is possible to
constrain the free parameters. Adopting m= 2 and n= 1 Eq. (2.109) becomes:

pr(ρ)=
[
α − (α + 1)

(
ρ

ρmax

)2](
ρ

ρmax

)
ρ. (2.111)

The model introduced by Mbonye and Kazanas represents a regular static black
hole, with a matter source that smoothly goes from a de Sitter behavior near the
origin to Schwarzschild’s spacetime outside the object. A space-time metric well-
adapted to examine the properties of this system is (Mbonye et al. 2011):

ds2 =−B(r)dt2 +
(

1− 2m(r)

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (2.112)

where

B(r) = exp
∫ r

r0

2

r ′2
[
m
(
r ′
)+ 4πr ′3psf r ′

]

×
[

1

(1− 2m(r ′)
r ′ )

]
dr ′, (2.113)

and

m(r)= 4π
∫ r

0
ρ
(
r ′
)
r ′2dr ′. (2.114)

Outside the body ρ→ 0, and Eq. (2.112) becomes Schwarzschild solution for
Rμν = 0. When r→ 0, ρ = ρmax and the metric becomes of de Sitter type:

ds2 =
(

1− r
2

r2
0

)
c2dt2 −

(
1− r

2

r2
0

)−1

dr2 − r2(dθ2 + sin2 θdφ2), (2.115)

with

r0 =
√

3

8πGρmax
. (2.116)

There is no singularity at r = 0 and the black hole is regular. For 0 ≤ r < 1 it has
constant positive density ρmax and negative pressure pr = −ρmax and space-time
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becomes asymptotically de Sitter in the innermost region. It might be speculated
that the transition in the equation of state occurs because at very high densities the
matter field couples with a scalar field that provides the negative pressure.

Other assumptions for the equation of state can lead to different (but still regu-
lar) behavior, like a bouncing close to r = 0 and the development of an expanding
closed universe inside the black hole (Frolov et al. 1990). Unstable behavior, both
dynamic and thermodynamic, seems to be a characteristic of these type of black
hole solutions (Pérez et al. 2011).

Regular black holes might also be found in f (R) gravity for some suitable func-
tion of the curvature scalar.

2.7.3 f (R) Black Holes

2.7.3.1 Rewriting the Field Equations of f (R) Gravity

In order to study the possible black hole solutions obtained from any f (R) theory,
we rewrite the action (1.122) in the form

S = Sg + Sm, (2.117)

where Sg is the gravitational action, with the scalar function now written as R +
f (R)

Sg = 1

16πG

∫
d4x

√|g|(R+ f (R)). (2.118)

From the matter term Sm, we define the energy momentum tensor as

T μν =− 2√|g|
δSm

δgμν
. (2.119)

By performing variations of (2.117) with respect to the metric tensor, we obtain the
field equations in metric formalism in a more convenient way:

Rμν
(
1+ f ′(R))− 1

2
gμν

(
R+ f (R))

+ (∇μ∇ν − gμν�)f ′(R)+ 8πGTμν = 0, (2.120)

with �=∇β∇β as before and f ′(R)= df (R)/dR. Clearly, for f (R)= 0 standard
General Relativity is recovered. Taking the trace of this equation yields:

R
(
1+ f ′(R))− 2

(
R + f (R))− 3�f ′(R)+ 8πGT = 0, (2.121)

where T = T μμ. Unlike the case of General Relativity, vacuum solutions (T = 0)
do not necessarily imply a null curvature R = 0. From Eq. (2.120) we obtain the
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condition for vacuum constant scalar curvature R =R0 solutions:

Rμν
(
1+ f ′(R0)

)− 1

2
gμν

(
R0 + f (R0)

)= 0. (2.122)

and the Ricci tensor becomes proportional to the metric,

Rμν = R0 + f (R0)

2(1+ f ′(R0))
gμν, (2.123)

with 1+ f ′(R0) �= 0. Taking the trace on the previous equation:

R0
(
1+ f ′(R0)

)− 2
(
R0 + f (R0)

)= 0, (2.124)

and therefore

R0 = 2f (R0)

f ′(R0)− 1
. (2.125)

If we want to find viable black hole solutions of Eq. (2.120), some conditions
must be imposed in order to make f (R) theories consistent with known gravitational
and cosmological facts. These conditions are (Cembranos et al. 2011):

1. f ′′(R)≥ 0 for R� f ′′(R). This is the stability requirement for a high-curvature
classical regime and that of the existence of a matter dominated era in cosmo-
logical evolution. A simple physical interpretation can be given to this condition:
if an effective gravitational constant Geff ≡G/(1+ f ′(R)) is defined, then the
sign of its variation with respect to R, dGeff/dR, is uniquely determined by the
sign of f ′′(R), so in case f ′′(R) < 0, Geff would grow as R does, because R
generates more and more curvature. This mechanism would destabilize the met-
ric field, since it would not have a fundamental state because any small curvature
would grow to infinity. Instead, if f ′′(R)≥ 0, a counter reaction mechanism op-
erates to compensate this R growth and stabilize the system.

2. 1+ f ′(R) > 0. This conditions ensures that the effective gravitational constant
is positive, as it can be checked from the previous definition of Geff.

3. f ′(R) < 0. Keeping in mind the strong restrictions of Big Bang nucleosynthe-
sis and cosmic microwave background, this condition ensures that the expected
behavior be recovered at early times, that is, f (R)/R→ 0 and f ′(R)→ 0 as
R→∞. Conditions 1 and 2 together demand f (R) to be a monotonously in-
creasing function between the values −1< f ′(R) < 0.

4. f ′(R) must be small in recent epochs. This condition is mandatory in order to
satisfy imposed restrictions by local (solar and galactic) gravity tests.

In looking for constant curvature R0 vacuum solutions for fields generated by
massive charged objects we follow Cembranos et al. (2011). The action (in units of
G= c= �= k = 1) is:

S = 1

16π

∫
d4x

√|g|(R + f (R)− FμνFμν
)
, (2.126)
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where Fμν = ∂μAν − ∂νAμ and Aμ the electromagnetic potential. This action leads
to the field equations:

Rμν
(
1+ f ′(R0)

)− 1

2
gμν

(
R0 + f (R0)

)

− 2

(
FμαF

α
ν −

1

4
gμνFαβF

αβ

)
= 0. (2.127)

If we take the trace of the previous equation, then (2.124) is recovered due to the
fact that Fμμ = 0.

The axisymmetric, stationary and constant curvature R0 solution that describes a
black hole with mass, electric charge, and angular momentum was originally found
by Carter (1973). In Boyer-Lindquist coordinates, the metric describing with no
coordinate singularities the spacetime exterior to the black hole and interior to the
cosmological horizon (provided it exists), is:

ds2 = ρ2

Δr
dr2 + ρ2

Δθ
dθ2 + Δθ sin2 θ

ρ2

[
a
dt

Ξ
− (
r2 + a2)dφ

Ξ

]2

Δr

ρ2

(
dt

Ξ
− a sin2 θ

dφ

Ξ

)2

, (2.128)

with

aΔr ≡
(
r2 + a2)

(
1− R0

12
r2
)
− 2Mr + q2

(1+ f ′(R0))
,

ρ2 ≡ r2 + a2 cos2 θ,

Δθ ≡ 1+ R0

12
a2 cos2 θ,

Ξ ≡ 1+ R0

12
a2,

(2.129)

whereM , a and q , as before, denote the mass, spin, and electric charge parameters,
respectively.

The potential vector and electromagnetic field tensor in Eq. (2.127) for metric
(2.128) are:

A = −qr
ρ2

(
dt

Ξ
− a sin2 θ

dφ

Ξ

)
,

F = −q(r
2 − a2 cos2 θ)

ρ4

(
dt

Ξ
− a sin2 θ

dφ

Ξ

)
∧ dr (2.130)

− 2qra cos θ sin θ

ρ4
dθ ∧

[
a
dt

Ξ
− (
r2 + a2)dφ

Ξ

]
.
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We adopt Q2 ≡ q2/(1+ f ′(R0)) in what follows to refer to the electric charge
parameter of the black hole.

If we take the limits M→ 0, Q→ 0, a→ 0 to the metric, we obtain a constant
curvature spacetime metric:

ds2 =−
(

1− R0r
2

12

)
dt2 + 1

(1− R0r
2

12 )
dr2 + r2dΩ2, (2.131)

that corresponds to either a de Sitter or an anti-de Sitter space-time depending on the
sign ofR0. Clearly, when a→ 0 andQ→ 0, Schwarzschild black hole is recovered.

Calculating RμνσρRμνσρ , only ρ = 0 happens to be an intrinsic singularity, and
considering the definition of ρ in (2.129), such singularity is given by:

r = 0 and θ = π/2. (2.132)

Keeping in mind that we are working with Boyer-Lindquist coordinates, the set of
points given by r = 0 and θ = π/2 represent a ring in the equatorial plane of radius
a centered on the rotation axis of the black hole, just as in Kerr black holes.

The horizons are found from grr = 0, i.e. their location is given by the roots of
the equation Δr = 0:

r4 +
(
a2 − 12

R0

)
r2 + 24M

R0
r − 12

R0

(
a2 +Q2)= 0. (2.133)

This is a fourth order equation that can be rewritten as:

(r − r−)(r − rint)(r − rext)(r − rcosm)= 0, (2.134)

where r− is always a negative solution with no physical meaning, rint and rext are
the interior and exterior horizons respectively, and rcosm represents the cosmological
event horizon for observers between rext and rcosm. This horizon divides the region
that the observer could see from the region she/he could never see if she/he waited
long enough. The existence of real solutions for this equation is given by a factor h,
called horizon parameter (Cembranos et al. 2011):

h ≡
[

4

R0

(
1− R0

12
a2
)2

− 4
(
a2 +Q2)

]3

+ 4

R0

{(
1− R0

12
a2
)[

4

R0

(
1− R0

12
a2
)2

+ 12
(
a2 +Q2)

]
− 18M2

}2

. (2.135)

For a negative scalar curvature R0, three options may be considered: (i) h > 0:
there are only two real solutions, rint and rext, lacking this configuration a cosmo-
logical horizon, as it is expected for an anti-de Sitter like Universe. (ii) h= 0: there
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is only a degenerated root, particular case of an extremal black hole, whose interior
and exterior horizons have merged into one single horizon with a null surface grav-
ity. (iii) h < 0: there is no real solution to (2.135), which means absence of horizons
and then a naked singularity.

For a positive curvature R0, there are also several configurations depending on
the value of h: (i) h < 0: both rint, rext, and rcosm are positive and real, thus the black
hole possesses a well-defined horizon structure in an Universe with a cosmological
horizon. (ii) h= 0: two different cases may be described, either rint and rext become
degenerated solutions, or rext and rcosm do so. The first case represents an extremal
black hole. The second case can be understood as the cosmological limit for which
a black hole preserves its exterior horizon without being “torn apart” by the rela-
tive recession speed between two radially separated points induced by the cosmic
expansion in an Universe described by a constant positive curvature. (iii) h > 0:
there is only one positive root, that may be either rint or rcosm. In the first case, the
mass of the black hole has exceeded the limit imposed by the cosmology (h = 0),
and there are neither exterior nor cosmological horizon. This situation just leaves
the interior horizon to cover the singularity (marginal naked singularity case). If the
root corresponds to rcosm, there is a naked singularity with a cosmological horizon.
From a certain positive value of the curvature Rcrit

0 onward, the h factor goes to zero
for two values of a, i.e., apart from the usual amax for which the black hole turns
extremal, there is now a spin lower bound amin, below which the black hole turns
into a marginally extremal black hole. Therefore

h
(
amax,M, |R0| ≥ 0,Q

)= 0

⇒ amax ≡ amax
(
M, |R0| ≥ 0,Q

)
, (2.136)

h
(
amin,M,R0 ≥Rcrit

0 > 0,Q
)= 0

⇒ amin ≡ amin
(
M,R0 ≥Rcrit

0 > 0,Q
)
. (2.137)

Another interesting feature of Kerr-Newman black holes is the presence of an er-
gosphere bounded by a Stationary Limit Surface (SLS), given by gtt = 0. In Boyer-
Lindquist coordinates:

Δθ sin2 θa2

ρ2Ξ2
− Δr

ρ2Ξ2
= 0, (2.138)

that leads to the fourth order equation

r4 +
(
a2 − 12

R0

)
r2 + 24M

R0
r −

(
a2 cos2 θ + 12

R0

)
a2 sin2 θ

− 12

R0

(
a2 +Q2)= 0, (2.139)

which can be rewritten as:

(r − rS−)(r − rS int)(r − rS ext)(r − rS cosm)= 0. (2.140)
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Fig. 2.15 Left: Diagram of a Kerr-Newman black hole structure with negative curvature solution
R0 =−0.4< 0, M = 1, a = 0.85 and Q= 0.35 (h > 0). Right: Black hole structure with positive
curvature solution R0 = 0.4> 0, M = 1, a = 0.9 and Q= 0.4 (h < 0). Dotted surfaces represent
the static limit surfaces (SLS) whereas horizons are shown with continuous lines. The rotation
axis of the black hole is indicated by the vertical arrow. In both types of black hole, the region
between the exterior SLS rS ext and its associated exterior horizon rext is known as ergoregion.
From Cembranos et al. (2011). Reproduced by permission of the authors

From this equation it follows that each horizon has an “associated” SLS. Both
hypersurfaces coincide at θ = 0,π as seen when comparing (2.139) with Eq.(2.133).
A scheme of black hole horizons and the corresponding ergospheres is shown in
Fig. 2.15 for both signs of R0.

For some general properties of static and spherically symmetric black holes in
f (R)-theories see Perez-Bergliaffa and Chifarelli de Oliveira Nunes (2011). For
Kerr-f (R) black holes and disks around them see Pérez et al. (2013).

2.7.4 Mini Black Holes

In principle, a black hole can have any mass above the Planck mass. A black hole
is formed always that there is an energy density large enough as to curve the space-
time forming a null closed surface. A lower possible mass for a black hole is im-
posed by the Compton wavelength, λC = h/Mc, which represents a limit on the
minimum size of the region in which a mass M at rest can be localized. For a suf-
ficiently small M , the reduced Compton wavelength (λ̄C = �/Mc) exceeds half the
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Schwarzschild radius, and no black hole description exists. The smallest mass for a
black hole is thus approximately the Planck mass.

Very low-mass or “mini” black holes evaporate very quickly by emission of
Hawking’s radiation (see Sect. 3.3). The absence of notable excesses of particles in
cosmic radiation—especially in the form of anti-protons—compared with the fluxes
expected in a “standard” astrophysical context allows to impose strict constraints on
the number density of black holes evaporating in today’s Universe. In particular, it
can be deduced that their contribution to the total mass of the universe is today no
higher than one ten millionth. As these small black holes are likely to have been
produced in the early cosmos by the fluctuations in energy density at that time—and
with masses that were very low—it is possible to obtain vital information about the
universe’s degree of inhomogeneity shortly after the period of inflation by imposing
upper limits from observations of secondary particles to the possible number of mini
black holes.

In addition to these astrophysical and cosmological aspects, there is another
route of investigation that is particularly promising for microscopic black holes,
namely at particle accelerators. If the center-of-mass energy of two elementary par-
ticles is higher than the Planck scale, and their impact parameter is lower than the
Schwarzschild radius, a black hole must be produced. If the Planck scale is thus
in the TeV range, the 14 TeV center-of-mass energy of the Large Hadron Collider
might allow it to become a black-hole factory with a production rate as high as about
one per second.

The possible presence of extra compact dimensions (Sect. 1.12) would be ben-
eficial for the production of black holes. The key point is that it allows the Planck
scale to be reduced to accessible values, but it also allows the Schwarzschild radius
to be significantly increased, thus making the condition for the impact parameter
to be smaller than the Schwarzschild radius easier to satisfy. It is important to note
that the resulting mini black holes have radii that are much smaller than the size of
extra dimensions, and that they can therefore be considered as totally immersed in
a D-dimensional space, which has, to a good approximation, a time dimension and
D−1 non-compact space dimensions. The black hole thus acts like a quasi-selective
source of S waves and sees our brane in the same way as the “bulk” associated with
the extra dimensions. As the particles residing in the brane greatly outnumber those
living in the bulk (essentially gravitons), the black hole evaporates into particles
of the Standard Model. Its lifetime is very short (of the order of 10−26 s) and its
temperature (typically about 100 GeV here) is much lower than it would be with
the same mass in a four-dimensional space. The black hole nevertheless retains its
characteristic spectrum in the form of a quasi-thermal law peaked around its temper-
ature. From the point of view of detection, it is not too difficult to find a signature for
such events: they have a high multiplicity, a large transverse energy, a “democratic”
coupling to all particles, and a rapid increase in the production cross-section with
energy.

First of all the reconstruction of temperature (determined by the energy spectrum
of the particles emitted when the black hole evaporates) as a function of mass (de-
termined by the total energy deposited) allows information to be gained about the
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dimensionality of space-time. In the case of Planck scales close to the TeV mark, the
number of extra dimensions could thus be revealed quite easily by the characteris-
tics of the emitted particles. One can go even further. In particular, quantum gravity
effects could be revealed, as behavior during evaporation in the Planck region is sen-
sitive to the details of the gravitational theory used (for more on mini black holes
see Frolov and Zelnikov 2011, and references therein).
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Chapter 3
Black Hole Physics

3.1 Black Hole Formation

3.1.1 Stellar Structure

The idea that stars are self-gravitating gaseous bodies was introduced in the XIX
Century by Lane, Kelvin, and Helmholtz. They suggested that stars should be un-
derstood in terms of the equation of hydrostatic equilibrium:

dp(r)

dr
=−GM(r)ρ(r)

r2
, (3.1)

where the pressure P is given by

P = ρkT

μmp
. (3.2)

Here, k is Boltzmann’s constant,μ is the mean molecular weight, T the temperature,
ρ the mass density, andmp the mass of the proton. Kelvin and Helmholtz suggested
that the source of heat was the gravitational contraction of the gas. However, if the
luminosity of a star like the Sun is taken into account, the total energy available
would be released in 107 yr, which is in contradiction with the geological evidence
that can be found on Earth.

Arthur S. Eddington made two fundamental contributions to the theory of stellar
structure proposing that (i) the source of energy was of thermonuclear nature and
(ii) the outward pressure of radiation should be included in Eq. (3.1). Then, the basic
equations for stellar equilibrium become (Eddington 1926):

d

dr

[
ρkT

μmp
+ 1

3
aT 4

]
=−GM(r)ρ(r)

r2
, (3.3)

dprad(r)

dr
=−

(
L(r)

4πr2c

)
1

l
, (3.4)
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dL(r)

dr
= 4πr2ερ, (3.5)

where l is the mean free path of the photons, L the luminosity, and ε the energy
generated per gram of material per unit time.

Once the nuclear power of the star is exhausted, the contribution from the ra-
diation pressure decreases dramatically when the temperature diminishes. The star
then contracts until a new source of pressure helps to balance gravity’s attraction:
the degeneracy pressure of the electrons. The equation of state for a degenerate gas
of electrons is:

prel =Kρ4/3. (3.6)

Then, using Eq. (3.1),

M4/3

r5
∝ GM

2

r5
. (3.7)

Since the radius cancels out, this relation can be satisfied by a unique mass:

M = 0.197

[(
hc

G

)3 1

m2
p

]
1

μ2
e

= 1.4M�, (3.8)

where μe is the mean molecular weight of the electrons. The result implies that a
completely degenerated star has this and only this mass. This limit was found by
Chandrasekhar (1931) and is known as the Chandrasekhar limit.

In 1939 Chandrasekhar conjectured that massive stars could develop a degener-
ate core. If the degenerate core attains sufficiently high densities the protons and
electrons will combine to form neutrons. “This would cause a sudden diminution
of pressure resulting in the collapse of the star to the neutron core giving rise to an
enormous liberation of gravitational energy. This may be the origin of the supernova
phenomenon.” (Chandrasekhar 1939). An implication of this prediction is that the
masses of neutron stars (objects supported by the degeneracy pressure of nucleons)
should be close to 1.4M�, the maximum mass for white dwarfs. Not long before,
Baade and Zwicky commented: “With all reserve we advance the view that super-
novae represent the transitions from ordinary stars into neutron stars which in their
final stages consist of extremely closely packed neutrons”. In a single paper Baade
and Zwicky not only invented neutron stars and provided a theory for supernova
explosions, but also proposed that these explosion were the origin of cosmic rays
(Baade and Zwicky 1934).

In the 1930s, neutron stars were not taken as a serious physical possibility.
Oppenheimer and Volkoff (1939) concluded that if the neutron core was massive
enough, then “either the Fermi equation of state must fail at very high densities,
or the star will continue to contract indefinitely never reaching equilibrium”. In a
subsequent paper, Oppenheimer and Snyder (1939) chose between these two pos-
sibilities: “when all thermonuclear sources of energy are exhausted a sufficiently
heavy star will collapse. This contraction will continue indefinitely till the radius
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of the star approaches asymptotically its gravitational radius. Light from the sur-
face of the star will be progressively reddened and can escape over a progressively
narrower range of angles till eventually the star tends to close itself off from any
communication with a distant observer”. What we now understand as a black hole
was then conceived. The scientific community paid no attention to these results, and
Oppenheimer and many other scientists turned their efforts to win a war.

3.1.2 Stellar Collapse

Black holes will form every time that matter and fields are compressed beyond the
corresponding Schwarzschild radius. This can occur in a variety of forms, from par-
ticle collisions to the implosion of stars or the collapse of dark matter in the early
universe. The most common black hole formation mechanism in our Galaxy seems
to be gravitational collapse. A normal star is stable as long as the nuclear reactions
occurring in its interior provide thermal pressure to support it against gravity. Nu-
clear burning gradually transforms the stellar core from H to He and in the case
of massive stars (M > 5M�) then to C and finally to Fe. The core contracts in the
process, in order to achieve the ignition of each phase of thermonuclear burning.

Finally, the endothermic disintegration of iron-group nuclei, which are those with
the tightest bound, precipitates the collapse of the core to a stellar-mass black hole.
Stars with masses in the range 20–30M� produce black holes with M > 1.8M�.
Low-mass black holes (1.5M� <M < 1.8M�) can result from the collapse of stars
of 18–20M� along with the ejection of the outer layers of the star by a shock wave
in an event known as Type II supernova. A similar event, occurring in stars with
10–18M� leaves behind a neutron star. Very massive stars with high spin likely
end producing a gamma-ray burst and a very massive (M > 10M�) black hole. The
binary stellar systems have a different evolution. The interested reader can find a
comprehensive review in Brown et al. (2000).

In Fig. 3.1 we show the Eddington-Finkelstein diagram of the gravitational col-
lapse of a star. Once the null surface of the light cones points along the time axis
the black hole is formed: light rays will never be again able to escape to the outer
universe. The different paths that can lead to a stellar-mass black hole are illustrated
in Fig. 3.2.

If the collapse is not perfectly symmetric, any asymmetry in the resulting black
hole is radiated away as gravitational waves, in such a way that the final result is a
black hole that is completely characterized by the three parameters M , J , and Q.
The black hole, once formed, has no hints about the details of the formation process
and its previous history.

Gravitational collapse can also be the result of inhomogeneities in the original
metric giving rise to mini-black holes as proposed by Hawking (1971), although
the number of microscopic black holes is strongly constrained by observations of
cosmic gamma-ray background emission.

Let us restrict ourselves to the homogeneous collapse of a spherically symmetric
star. The dynamical interior of the collapsing star will depend on the details of the
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Fig. 3.1 An
Eddington-Finkelstein
diagram of a collapsing star
with the subsequent black
hole formation.
From Luminet (1998)

Fig. 3.2 Life cycle of stars
and channels for black hole
formation

stellar matter, described by the equation of state. If as a first approximation, as done
by Oppenheimer and Snyder (1939), the star is modeled as a spherical cloud of
dust, the interior is pressure-less: P = 0 and the energy-momentum tensor is T μν =
ρuμuν , with ρ the energy density and uμ the 4-velocity field of the fluid. Solving
Einstein’s field equations determines the metric coefficients completely, yielding a
line element that is identical to that of the close homogeneous isotropic Friedmann
model:

ds2 = dt2 −R2(r, t)

[
dr2

1− r2
+ r2dΩ2

]
, (3.9)

where R(r, t) is a time-dependent scale factor, dΩ2 = dθ2 + sin2 θdφ2 is the met-
ric on a 2-sphere, and we adopted units of c = 1. Since cold dust does not radi-
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ate, the exterior solution is Schwarzschild space-time in accordance with Birkhoff’s
theorem. The interior solution and the vacuum exterior must match at the surface
of the collapsing cloud. When the collapse is total, the final space-time becomes
Schwarzschild’s.

Misner and Sharp (1964) developed a general formalism for spherically sym-
metric gravitational collapse including pressure. The energy-momentum tensor now
is T μν = (ρ + P)uμuν + Pgμν and the line element in co-moving coordinates is
(Misner and Sharp 1964; Joshi 2007):

ds2 = e2ϕdt2 − eλdr2 −R2(r, t)dΩ2, (3.10)

where ϕ and λ are functions of r and t . The components of the 4-velocity are:
u0 = e−ϕ , ui = 0, for i = r, θ,φ.

We can now introduce a function m(r, t) by defining:

eλ =
(

1+ Ṙ2 − 2m

r

)−1(
∂R

∂r

)2

, (3.11)

where a dot means differentiation with respect to t and multiplication by e−ϕ ,

ḟ = uμ ∂f
∂xμ

= e−ϕ
(
∂f

∂t

)
. (3.12)

This is the co-moving proper time derivative.
Integrating the conservation equation T μν;ν = 0 and solving Einstein’s field equa-

tions, we can find the Misner-Sharp equations for spherically symmetric collapse:

ṁ=−4πR2P Ṙ, (3.13)

R̈ =
(

1+ Ṙ2 − 2m/r

ρ + P
)(
∂P

∂R

)
− m+ 4πR3P

R2
, (3.14)

∂m

∂R
= 4πR2ρ. (3.15)

These equations, along with the equation of state relating P and ρ, determine the
dynamical evolution of the spherical homogeneous collapse of the star. If P = 0 the
results of Oppenheimer and Snyder (1939) are recovered. When P �= 0 the solution
requires numerical integration.1 Any solution demands the specification of initial
values for R(r,0), m(r,0), and U(r,0), with U = e−ϕṘ. It is also required that
at r = 0 the functions R, m, and U all vanish. If rb defines the outer boundary
of the distribution of matter, then m(rb, t) =M is constant and the interior metric
can be smoothly joined at the surface r = rb to an exterior Schwarzschild metric of
mass M .

1The reader is referred for numerical calculations to the book by Baumgarte and Shapiro (2010)
and references therein.
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Fig. 3.3 A radiating
collapsing star and the
different regions associated
with the collapsing matter,
the radiation field, and the
vacuum exterior

The analysis outlined above does not consider the effects of the radiation field of
the collapsing star. If radiation is being produced by the star, the exterior solution
is not a vacuum solution such as Schwarzschild’s. Although the effects of radiation
of a normal star on the space-time metric are negligible, in the case of the later
stages of gravitational collapse they can become important. A collapsing radiating
star would be surrounded by an expanding zone of radiation. Only far from the radi-
ation zone space-time can be described by the Schwarzschild solution. The system,
then, comprises three regions: the Misner-Sharp collapsing space-time, the radia-
tion zone, and an exterior Schwarzschild space-time, which asymptotically tends to
Minskowski space-time (see Fig. 3.3).

To find the metric in the radiation region, Einstein’s field equations must be
solved for an energy-momentum tensor of the form:

Tμν = σkμkν, (3.16)

where kμ is a null radial vector pointing outwards, and σ is the energy density of
radiation in a local frame with velocity uμ.

A solution of this kind was found by Vaidya (1943, 1951). In null coordinates
(u, r, θ,φ) the metric is given by the line element:

ds2 =
(

1− 2m(u)

r

)
du2 + 2dudr − r2dΩ2, (3.17)

where m(u) is an arbitrary non-increasing function of the retarded time coordi-
nate u. The latter is related with Schwarzschild’s time t by:

u= t − r − 2m log(r − 2m). (3.18)
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Fig. 3.4 Light cones for
Vaidya’s metric. The surface
r = 2m(u) is a space-like
surface. Adapted from
Lindquist et al. (1965)

From (3.16), (3.17), and Einstein’s equations:

σ =− 1

4πr2

dm(u)

du
. (3.19)

The total luminosity of the star at infinity is L = −dm(u)/du. Hence, m is inter-
preted as the mass of the system and the energy flux is its negative rate of change.

The properties of Vaidya space-time have been discussed by Lindquist et al.
(1965). In particular, they have shown that the surface r = 2m, unlike the
Schwarzschild case, is a space-like hypersurface; no time-like or null trajectories
can cross it from the outside to reach the inner region. This is illustrated in Fig. 3.4.

An interesting aspect of the gravitational collapse of a radiating star is that for
some prescriptions of the mass function (e.g. m(u)= λu, where the rate of collapse
is controlled by the value of λ), it is possible to have a slow collapse (adopting
λ small), in such a way that the onset of the event horizon is delayed beyond the
formation of the singularity, allowing, in principle, outgoing null geodesics origi-
nated close to the non-regular region to reach the exterior. Such results can also be
obtained with inhomogeneous collapse (see Fig. 3.5 for a sketch of the situation).
Whether singularities formed by gravitational collapse can be glimpsed by external
observers is an open topic (for more on this see Joshi 2007 and Joshi and Malafarina
2011).

3.1.3 Supermassive Black Holes

Supermassive black holes can result from a variety of processes occurring at the
center of galaxies as discussed by Rees (1984); see Fig. 3.6 for a sketch of some
possible formation paths. Some current views, however, suggest that galaxies were
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Fig. 3.5 Formation of a
black holes with visible
singularity on the onset.
Compare with Fig. 3.1 where
the horizon always covers the
singularity. Adapted from
Joshi and Malafarina (2011)

formed around seed massive black holes which were the result of the gravitational
collapse of dark matter.

Dynamical evidence supports the existence of supermassive black holes in the
centers of most nearby galaxies. The masses of these black holes ranges from ∼106

to ∼109M�. In the case of our own galaxy the black hole has a mass ∼4× 106M�.
The existence of black holes with masses up to ∼109M� has been inferred in

active galactic nuclei (AGN) with cosmological redshift z > 6. Less massive but
anyway significant black holes might have existed in large numbers during the
Dark Ages of the Universe, after the first combination of protons and electrons
(Volonteri 2010). Such an early black hole formation might be the result of one
or several of the following processes: (1) gravitational collapse of the first genera-
tion of stars—the so-called Population III stars—, (2) gas-dynamical instabilities,
(3) stellar-dynamical stabilities, (4) dark matter collapse, and (5) primordial fluctu-
ations. We shall briefly discuss these possibilities.

Population III stars are formed out of the collapse of zero-metallicity gas after the
first combination. These stars are expected to be very massive (M∗ > 100M�, e.g.
Gao et al. 2007). Massive stars evolve fast and undergo at the end of their lifetimes
total gravitational collapse leaving behind black holes with masses between 40M�
and perhaps up to 1000M�, except in the range∼140–260M�, where the pair insta-
bility supernovae leave no compact remnant (e.g. Fryer et al. 2001). Galaxies then
might be formed around these early black holes which would group following some
of the paths indicated in Fig. 3.6.

If fragmentation can be inhibited in early massive clouds (e.g. by turbulence), and
cooling proceeds gradually, the gas will contract until rotation can stop the collapse.
In such a case, global dynamical instabilities, like bar-instabilities (e.g. Begelman
et al. 2006), can transport angular momentum outwards, allowing the core collapse
to continue. Then, the gas accumulated in the center can give rise to a very massive
central object. Eventually, total collapse might yield a black hole with a mass of
∼104M� or even higher (Volonteri 2010, and references therein).
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Fig. 3.6 Massive and supermassive black hole formation channels. Adapted from Rees (1984)

On the other hand, fragmentation and star formation in a collapsing cloud of gas
can form a very compact nuclear stellar cluster. Frequent stellar collisions can lead
to the formation of a black hole of ∼102–104M� (Devecchi and Volonteri 2009).
The process has been originally predicted by Begelman and Rees (1978). For details
see Spitzer (1987).

Direct collapse of dark matter proceeds as dust, without any heating, until the
annihilation rate of dark particles (say WIMPs) becomes significant. Then, a “dark-
matter star” might be supported by dark matter annihilation radiation. What is sup-
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ported, of course, is the baryonic content pulled down by the collapse of the dark
matter. The scenario has been discussed by Freese et al. (2008), who find that these
“dark stars” would have surface temperatures of 4000–10000 K, radii of ∼1014 cm,
luminosities of ∼106L�,2 and masses of ∼1000M�. After the annihilation of the
dark matter, the star would collapse into a massive black hole.

Another way to generate black holes in the early universe is from primordial
fluctuations in the density field. Anywhere the density fluctuations are large enough
as for the gravitational force to overcome the pressure, total collapse will follow,
with the consequent formation of primordial black holes. The mass of the black
holes can range from microscopic to thousands of solar masses. However, several
physical and astrophysical mechanisms constrain the number density of primordial
black holes (e.g. Carr et al. 2010). Significant primordial black holes of 109–1017 g
are extremely unlikely because of unobserved evaporation effects. Black hole with
masses up to ∼1040 g (∼107M�) are strongly constrained by astrophysical effects
to be at most a tiny fraction of the total density of the universe (Carr et al. 2010).

3.1.4 Intermediate-Mass Black Holes

Black holes with masses in the range 102–103M� can result from Population III
stellar collapse, as mentioned in the previous section. More massive black holes
might exist out of the core of galaxies if they undergo significant accretion or often
mergers with stars or other black holes. The accretion rate from the diffuse matter in
the normal interstellar medium is too slow a process as to form intermediate-mass
black holes (IMBHs) on the Hubble time (t ∼ H−1

0 × 1012 yr). If they exist, they
should result from interactions in a dense cluster (e.g. Miller 2003), either a young,
very massive stellar cluster or an old closed cluster.

Open stellar clusters are young (few tens of millions of years) and in them the
most massive stars are still in the main sequence. The stellar sizes are significant
enough as to make collisions and mergers possible. In these clusters the overall rate
of collision might be increased by the presence of binaries. Whether the mass growth
rate allows the formation of IMBH is still an open problem that depends on the
delicate balance between the frequency of collisions, and hence the mass accretion
onto a seed black hole, and the mass lost by the cluster in winds, supernovae, and
other expansive processes. So far, there is no conclusive evidence for the existence
of IMBH in young clusters.

Globular clusters are old and most of the stars in them are compact remnants,
such as neutron stars or white dwarfs. The cross section for collisions of such ob-
jects is negligible, so seed black holes are not expected to grow because of mergers.
Nonetheless, large numbers of binaries are expected to exist in old stellar clusters.
The binaries lose energy by gravitational radiation, and finally merge into a black

2The solar luminosity is L� ≈ 3.8× 1033 erg s−1.
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hole. If a black hole has a mass above ∼50M�, its inertia keeps it at the center of
the cluster, where repeated mergers can rise its mass up to ∼103M� or more on
the Hubble time (Miller and Hamilton 2002). Additionally, interactions of single
black holes and binaries inside the cluster can result in recoil kicks able to expel
black holes at speeds of more than 50 km s−1 (e.g. Webbink 1985). This might pro-
duce black hole mergers well outside the globular cluster when binaries are kicked
out.

Ultra-luminous X-ray sources have been found in a number of galaxies. These
sources display luminosities in the X-ray band of more than 1040 erg s−1, reaching
in one case even 3× 1041 s−1. It has been suggested that these and similar sources
might be IMBH accreting at sub-Eddington luminosities, but to find definitive evi-
dence has proven to be highly elusive so far. We shall say more on this in Chap. 6.

3.1.5 Mini Black Holes

Black holes with masses well below the solar mass might be formed out of primor-
dial fluctuations or through particle collisions if the Planck scale is lowered by extra
dimensions (Sect. 1.12.2). In general, if within some region of space density fluc-
tuations are large enough as to enforce the gravitational field to overcome pressure,
the whole region will collapse and form a primordial black hole. The mass of the
primordial black hole due to a cosmological density fluctuation at a time t after the
Big Bang will have a mass (Carr et al. 2010):

M ∼ c
3t

G
∼ 1015

(
t

10−23 s

)
g. (3.20)

Black holes formed by the Planck time would have a Planck mass of ∼10−5 g,
and black holes formed just ∼10−23 s after the Big Bang would have ∼1015 g. Ac-
cording to Eq. (3.29) below (Sect. 3.3), black holes of this mass or less should have
evaporated by now. Since these black holes should produce photons with energy
around 100 MeV at the present epoch, the observational limit on the γ -ray back-
ground intensity at this energy implies that their density could not exceed about
10−8 of the critical energy. This completely rules out small primordial black holes
as dark matter candidates (Carr et al. 2010). Current data, however, cannot exclude
black holes of sub-lunar mass (1020–1026 g) and of intermediate mass (102–104M�)
from having a significant contribution to the critical density of the Universe (e.g.
Blais et al. 2002; Saito et al. 2008). Black holes evaporating after the so-called
recombination time (approximately 3.8 × 105 yr after the Big Bang) have been
even suggested as a source of re-ionization for the Universe (e.g. He and Fang
2002).
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3.2 Black Hole Thermodynamics

The area of a Schwarzschild black hole is

ASchw = 4πr2
Schw =

16πG2M2

c4
. (3.21)

In the case of a Kerr-Newman black hole, the area is

AKN = 4π

(
r2+ +

a2

c2

)

= 4π

[(
GM

c2
+ 1

c2

√
G2M2 −GQ2 − a2

)2

+ a
2

c2

]
. (3.22)

Notice that expression (3.22) reduces to (3.21) for a =Q= 0.
When a black hole absorbs a mass δM , its mass increases toM+δM , and hence,

the area increases as well. Since the horizon can be crossed in just one direction,
the area of a black hole can only increase. This suggests an analogy with entropy.
A variation in the entropy of the black hole will be related to the heat (δQ) absorbed
through the following equation:

δS = δQ

TBH
= δMc

2

TBH
. (3.23)

Particles trapped in the black hole will have a wavelength:

λ= �c

kT
∝ rSchw, (3.24)

where k is the Boltzmann constant. Then,

ξ
�c

kT
= 2GM

c2
,

where ξ is a numerical constant. Hence, we can associate a temperature to the black
hole:

TBH = ξ �c3

2GkM
,

and

S = c6

32πG2M

∫
dASchw

TBH
= c3k

16π�Gξ
ASchw + constant.

A quantum mechanical calculation of the horizon temperature in the Schwarzschild
case leads to ξ = (4π)−1. So,

TBH = �c3

8GMk
∼= 10−7 K

(
M�
M

)
. (3.25)
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And we can write the entropy of the black hole as:

S = kc3

4π�G
ASchw + constant∼ 1077

(
M

M�

)2

k J K−1. (3.26)

The formation of a black hole implies a huge increase of entropy. Just to compare,
a star has an entropy ∼20 orders of magnitude lower than the corresponding black
hole. This tremendous increase of entropy is related to the loss of all the structure
of the original system (e.g. a star) once the black hole is formed.

The analogy between area and entropy allows to state a set of laws for black
holes thermodynamics (Bardeen et al. 1973):

• First law (energy conservation): dM = TBHdS+Ω+dJ +ΦdQ+δM . Here,Ω+
is the angular velocity, J the angular momentum, Q the electric charge, Φ the
electrostatic potential, and δM is the contribution to the change in the black hole
mass due to the change in the external stationary matter distribution.

• Second law (entropy never decreases): in all physical processes involving black
holes the total surface area of all the participating black holes can never decrease.

• Third law (Nernst’s law): the temperature (surface gravity) of a black hole cannot
be zero. Since TBH = 0 with A �= 0 for extremal charged and extremal Kerr black
holes, these are thought to be limit cases that cannot be reached in Nature.

• Zeroth law (thermal equilibrium): the surface gravity (temperature) is constant
over the event horizon of a stationary axially symmetric black hole.

3.3 Quantum Effects in Black Holes

If a temperature can be associated with black holes, then they should radiate as any
other body. The luminosity of a Schwarzschild black hole is:

LBH = 4πr2
SchwσT

4
BH ∼

16πσSB�
4c6

(8π)4G2M2k4
. (3.27)

Here σSB is the Stefan-Boltzmann constant. This expression can be written as:

LBH = 10−17
(
M�
M

)2

erg s−1. (3.28)

The lifetime of a black hole is:

τ ∼= M

dM/dt
∼ 2.5× 1063

(
M

M�

)3

yr. (3.29)

Notice that the black hole heats up as it radiates! This occurs because when the
hole radiates, its mass decreases and then according to Eq. (3.25) the temperature
must rise.
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If nothing can escape from black holes because of the existence of the event hori-
zon, what is the origin of this radiation? The answer, found by Hawking (1974), is
related to quantum effects close to the horizon. According to the Heisenberg rela-
tion!t!E ≥ �/2 particles can be created out of the ground state of a quantum field
as far as the relation is not violated. Particles must be created in pairs, along a tiny
time, in order to satisfy conservation laws other than energy. If a pair is created close
to the horizon and one particle crosses it, then the other particle can escape provided
its momentum is in the outward direction. The virtual particle is then transformed
into a real particle, at expense of the black hole energy. The black hole then will
lose energy and its area will decrease slowly, violating the second law of thermody-
namics. However, there is no violation if we consider a generalized second law, that
always holds: in any process, the total generalized entropy S+SBH never decreases
(Bekenstein 1973).

3.4 Black Hole Magnetospheres

In the real universe black holes are not expected to be isolated, hence the ergosphere
should be populated by charged particles. This plasma rotates in the same sense as
the black hole due to the effects of the frame dragging. A magnetic field will develop
and will rotate too, generating a potential drop that might accelerate particles up to
relativistic speeds and produce a wind along the rotation axis of the hole. Such a
picture has been consistently developed by Punsly and Coroniti (1990a, 1990b) and
Punsly (2001).

In Figs. 3.7 and 3.8 we show the behavior of fields and currents in the ergosphere.
Since the whole region is rotating, an ergospheric wind arises along the direction of
the large scale field.

Blandford and Znajek (1977) developed a general theory of force-free steady
state axisymmetric magnetosphere of a rotating black hole. In an accreting black
hole, a magnetic field can be sustained by external currents, but as such currents
move along the horizon, the field lines are usually representing as originating from
the horizon and then being torqued by rotation. The result is an outgoing electro-
magnetic flux of energy and momentum. The power of the outflow is:

L≈ 1039 erg s−1
(

M

106M�

)2(
a

amax

)2(
B

104 G

)2

. (3.30)

This picture stimulated the development of the so-called “Membrane Paradigm”
by Thorne et al. (1986) where the event horizon is attributed with a set of physical
properties. This model of black hole has been subjected to strong criticism by Punsly
(2001) since General Relativity implies that the horizon is causally disconnected
from the outgoing wind. We shall look at this closer in Chap. 5

Recent numerical simulations (e.g. Komissarov 2004) show that the key role in
the electrodynamic mechanisms of rotating black holes is played by the ergosphere
and not by the horizon. Globally, however, the Blandford-Znajek solution seems to
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Fig. 3.7 Currents in the infalling matter supports a radial magnetic field. As the inner part of
the current sheet approaches the black hole the sources are redshifted to observers at infinity and
their contribution to the poloidal magnetic field diminish. At some point X, the field reconnects.
Adapted from Punsly and Coroniti (1990b). Reproduced by permission of the AAS

Fig. 3.8 As reconnection
proceeds, the magnetic field
around the innermost currents
is disconnected from the large
scale field allowing the
destruction of the magnetic
flux by the black hole. From
Punsly and Coroniti (1990b).
Reproduced by permission of
the AAS

be asymptotically stable. The twisted magnetic fields in the ergosphere of a Kerr
black hole are shown in Figs. 3.9, 3.10 and 3.11. The controversy still goes on and
a whole bunch of new simulations are exploring the different aspects of relativistic
magnetohydrodynamic (MHD) outflows from black hole magnetospheres. We shall
say more about these outflows when discussing astrophysical jets.

3.5 Back Hole Interiors

The most relevant feature of a Schwarzschild black hole interior is that the roles of
space and time are exchanged: the space radial direction becomes time, and time be-
comes a space direction. Inside a spherical black hole, the radial coordinate becomes
time-like: changes occur in a prefer direction, i.e. toward the space-time singularity.
This means that the black hole interior is essentially dynamic. In order to see this,
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Fig. 3.9 Effects of the
ergosphere of a Kerr black
hole on external magnetic
field lines. Credit: NASA Jet
Propulsion Laboratory
(NASA-JPL)

let us recall the Schwarzschild metric (2.10):

ds2 =
(

1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2(dθ2 + sin2 θdφ2).

If we consider a radially infalling test particle:

ds2 =
(

1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2.

The structure of the light cones is defined by the condition ds = 0. Writing rSchw
once again for the Schwarzschild radius, we get:

(
1− rSchw

r

)
c2dt2 −

(
1− rSchw

r

)−1

dr2 = 0. (3.31)

If we consider the interior of the black hole, r < rSchw. Then,

(
1− rSchw

r

)−1

dr2 −
(

1− rSchw

r

)
c2dt2 = 0. (3.32)

The signs of space and time are now exchanged. The light cones, that in Schwarz-
schild coordinates are shown in Fig. 2.1, are now oriented with the time axis per-
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Fig. 3.10 Three-dimensional
graphic of magnetic field
lines and plasma flow around
the Kerr black hole. The black
sphere at the center depicts
the black hole horizon. The
transparent (gray) surface
around the black hole is that
of the ergosphere. The arrows
show the plasma flow
velocity. The tubes in the
shape of propellers show the
magnetic field lines. From
Koide (2004). Reproduced by
permission of the AAS

pendicular to the event horizon. The trajectory of photons is given by:

dr

dt
=∓c

∣∣∣∣1−
rSchw

r

∣∣∣∣, (3.33)

with r always decreasing. The light cones are thinner and thinner as r gets closer
to the singularity at r = 0. In addition to infalling particles, there is a small flux
of gravitational radiation into the black hole through the horizon because of small
perturbations outside it. This radiation, as the material particles and photons, ends
at the singularity.

In the case of a Kerr black hole, between the two horizons space and time also
exchange roles as it happens with the Schwarzschild interior black hole space-time.
Instead of time always moving inexorably onward, the radial dimension of space
moves inexorably inward to the second horizon, that it is also a Cauchy horizon, i.e.
a null hyper-surface beyond which predictability breaks down. After that, the Kerr
solution predicts a second reversal so that one can avoid the ring singularity and
achieve to orbit safely. In this strange region inside the Cauchy horizon the observer
can, by selecting a particular orbit around the ring singularity, travel backwards in
time and meet himself, i.e. there are closed time-like curves. Another possibility ad-
mitted by the equations for the observer in the central region is to plunge through the
hole in the ring to emerge in an anti-gravity universe, whose physical laws would
be even most peculiar. Or she/he can travel through two further horizons, (or more
properly anti-horizons), to emerge at coordinate time t =−∞ into some other uni-
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Fig. 3.11 Black hole
magnetosphere (corona) and
resulting outflows. This
article was published in
Koide et al. (2000). Copyright
Elsevier (2000)

verse. All this can be represented in a Penrose-Carter diagram for a Kerr black hole
(see Fig. 3.12).

The above discussion on Kerr black hole interiors is rather academic, since in
real black holes the inner horizon is likely unstable. Poisson and Israel (1990)
have shown that when the space-time is perturbed by a fully non-linear, ingoing,
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Fig. 3.12 Penrose-Carter
diagram of a non-extreme
Kerr solution. The figure is
repeated infinitely in both
directions. One trajectory
ends in the singularity (A),
the other two (B and C)
escape. IH stands for “inner
horizon”, EH for “external
horizon”, and S for
“singularity”. From Luminet
(1998)

spherically-symmetric null shell, a null curvature singularity develops at the inner
horizon. This singularity is “weak” in the sense that none of the scalar curvature
invariants is divergent there. The singularity development at the Cauchy horizon
would deal off the “Kerr tunnel” that would lead to other asymptotically flat uni-
verses. The key factor producing the instability is the infinite concentration of en-
ergy density close to the Cauchy horizon as seen by a free falling observer. The in-
finite energy density is due to the ingoing gravitational radiation, which is partially
backscattered by the inner space-time curvature. The non-linear interaction of the
infalling and outgoing gravitational fluxes results in the weak curvature singularity
on the Cauchy horizon, where a tremendous inflation of the mass parameter takes
place (see Fig. 3.13). This changes the conception of the Kerr black hole interior,
since instead of a Cauchy horizon acting as a curtain beyond which predictability
breaks down we have a microscopically thin region near the inner horizon where
the curvature is extremely high (Poisson and Israel 1990). Other analysis based on
plane-symmetric space-time analysis seem to suggest that instead of a null, weak
singularity a space-like strong singularity is formed under generic non-linear per-
turbations (Yurtsever 1993). This is the same result that can be obtained through
a linear perturbation analysis of the inner horizon. More recent numerical investi-
gations using regular initial data find a mass inflation-type null singularity (Droz
1997).

The issue of realistic black hole interiors is still an open one, with active research
ongoing.
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Fig. 3.13 Diagram
representing a Kerr black hole
interior and the accumulation
of energy-momentum at the
inner horizon. H1 and H2 are
the outer and inner horizons,
respectively. Reprinted figure
with permission from
Bonanno et al. (1994).
Copyright (1994) by the
American Physical Society

3.6 Singularities

A space-time is said to be singular if the manifoldM that represents it is incomplete.
A manifold is incomplete if it contains at least one inextendible curve. A curve
γ : [0, a)−→M is inextendible if there is no point p in M such that γ (s)→ p as
a→ s, i.e. γ has no endpoint inM . A given space-time (M,gab) has an extension if
there is an isometric embedding θ :M→M ′, where (M ′, g′ab) is a space-time and
θ is onto a proper subset of M ′. A space-time is singular if it contains a curve γ
that is inextendible in the sense given above. Singular space-times are said to contain
singularities, but this is an abuse of language: singularities are not “things” in space-
time, but a pathological feature of the theory. Actually, “singularities” cannot exist
in space-time by definition.

A so-called coordinate singularity is not a real feature of a singular space-time.
The space-time seems to be singular in some representation but the pathologies
(divergences) can be removed by a coordinate change, like the “Schwarzschild sin-
gularity” at rScwh = 2GM/c2 in a Schwarzschild space-time. We can change the
description of the space-time to Eddington-Finkelstein coordinates, for instance,
and then see that geodesic lines can go through the “singular” point of the manifold.
Essential singularities cannot be removed in this way. This occurs, for instance, with
the singularity at r = 0 in the Schwarzschild space-time or with the ring singularity
at r = 0 and θ = π/2 in the Kerr metric written in Boyer-Lindquist coordinates.3 In
such cases, the curvature scalar RμνρσRμνρσ diverges. There is no metric there, and
Einstein’s equations cannot be defined.

An essential or true singularity should not be interpreted as a representation of a
physical object of infinite density, infinite pressure, etc. Since the singularity does
not belong to the manifold that represents space-time in General Relativity, it sim-
ply cannot be described or represented in the framework of such a theory. General
Relativity is incomplete in the sense that it cannot provide a full description of the
gravitational behavior of any physical system. True singularities are not within the

3In Cartesian coordinates the Kerr singularity occurs at x2 + y2 = a2c−2 and z= 0.
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range of values of the bound variables of the theory: they do not belong to the ontol-
ogy of a world that can be described with 4-dimensional differential manifolds (for
more on this see Romero 2012).

An essential singularity in the solutions of Einstein’s field equations is one of
two things:

1. A situation where matter is forced to be compressed to a point (a space-like
singularity).

2. A situation where certain light rays come from a region with infinite curvature
(time-like singularity).

Space-like singularities are a feature of non-rotating uncharged black-holes,
whereas time-like singularities are those that occur in charged or rotating black
hole exact solutions, where time-like or null curves can always avoid hitting the
singularities.

What is referred to as a singularity does not belong to classical space-time. Mat-
ter compressed to such a point that its effects on space-time cannot be described by
General Relativity is usually designated as a “singularity”. At such small scales and
high densities, relations among things should be described in a quantum mechanical
way. If space-time is formed by the events that occur to things, it should be rep-
resented through a quantum theory when the quantum things have effect upon the
space-time structure. Since even in the standard quantum theory time appears as a
continuum variable, a new approach is necessary (see, for instance, Rovelli 2004;
Oriti 2009, and Gambini and Pullin 2011).

Space-time singularities are expected to be covered by horizons. Although for-
mation mechanisms for naked singularities have been proposed, the following con-
jecture is usually considered valid:

• Cosmic Censorship Conjecture (Roger Penrose): singularities are always hidden
behind event horizons.

We emphasize that this conjecture is not proved in General Relativity and hence
it has not the strength of a theorem of the theory.

The classical references on singular space-times are Hawking and Ellis (1973)
and Clarke (1993).

3.6.1 Singularity Theorems

Several singularity theorems can be proved from pure geometrical properties of the
space-time model (Clarke 1993). The most important one is due to Hawking and
Penrose (1970):

Theorem Let (M, gab) a time-oriented space-time satisfying the following condi-
tions:

1. RabV aV b ≥ 0 for any non space-like V a .
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2. Time-like and null generic conditions are fulfilled.
3. There are no closed time-like curves.
4. At least one of the following conditions holds

• There exists a compact4 achronal set5 without edge.
• There exists a trapped surface.
• There is a p ∈M such that the expansion of the future (or past) directed null

geodesics through p becomes negative along each of the geodesics.

Then, (M, gab) contains at least one incomplete time-like or null geodesic.

If the theorem has to be applied to the physical world, the hypothesis must be sup-
ported by empirical evidence. Condition 1 will be satisfied if the energy-momentum
T ab satisfies the so-called strong energy condition: TabV aV b ≥−(1/2)T aa , for any
time-like vector V a . If the energy-momentum is diagonal:

Tμμ = (ρ,−P,−P,−P)
the strong energy condition can be written as ρ+3P ≥ 0 and ρ+P ≥ 0. Condition 2
requires that any time-like or null geodesic experiences a tidal force at some point in
its history. Condition 4a requires that, at least at one time, the Universe is closed and
the compact slice that corresponds to such a time is not intersected more than once
by a future directed time-like curve. The trapped surfaces mentioned in 4b refers
to horizons due to gravitational collapse. Condition 4c requires that the Universe is
collapsing in the past or the future.

The theorem is purely geometric, no physical law is invoked. Theorems of this
type are a consequence of the gravitational focusing of congruences. A congruence
is a family of curves such that exactly one, and only one, time-like geodesic tra-
jectory passes through each point p ∈M . If the curves are smooth, a congruence
defines a smooth time-like vector field on the space-time model. If V a is the time-
like tangent vector to the congruence, we can write the spatial part of the metric
tensor as:

hab = gab + VaVb. (3.34)

4A space is said to be compact if whenever one takes an infinite number of “steps” in the space,
eventually one must get arbitrarily close to some other point of the space. Thus, whereas disks
and spheres are compact, infinite lines and planes are not, nor is a disk or a sphere with a missing
point. In the case of an infinite line or plane, one can set off making equal steps in any direction
without approaching any point, so that neither space is compact. In the case of a disk or sphere
with a missing point, one can move toward the missing point without approaching any point within
the space. More formally, a topological space is compact if, whenever a collection of open sets
covers the space, some sub-collection consisting only of finitely many open sets also covers the
space. A topological space is called compact if each of its open covers has a finite sub-cover.
Otherwise it is called non-compact. Compactness, when defined in this manner, often allows one
to take information that is known locally—in a neighborhood of each point of the space—and to
extend it to information that holds globally throughout the space.
5A set of points in a space-time with no two points of the set having time-like separation.
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For a given congruence of time-like geodesic we can define the expansion, shear,
and torsion tensors as:

θab = V(i;l)hiahlb, (3.35)

σab = θab − 1

3
habθ, (3.36)

ωab = hiahlbV[i;l]. (3.37)

Here, the volume expansion θ is defined as:

θ = θabhab =∇aV a = V a;a. (3.38)

The rate of change of the volume expansion as the time-like geodesic curves in
the congruence are moved along is given by the Raychaudhuri (1955) equation:

dθ

dτ
=−RabV aV b − 1

3
θ2 − σabσ ab +ωabωab,

or

dθ

dτ
=−RabV aV b − 1

3
θ2 − 2σ 2 + 2ω2. (3.39)

We can use now Einstein’s field equations to relate the congruence with the
space-time curvature:

RabV
aV b = κ

[
TabV

aV b + 1

2
T

]
. (3.40)

The term TabV
aV b represents the energy density measured by a time-like observer

with unit tangent for velocity V a . The weak energy condition then states that:

TabV
aV b ≥ 0. WEC (3.41)

A stronger condition is:

TabV
aV b + 1

2
T ≥ 0. SEC (3.42)

Notice that this condition implies, according to Eq. (3.40),

RabV
aV b ≥ 0. (3.43)

We see then that the conditions of the Hawking-Penrose theorem imply that the
focusing of the congruence yields:

dθ

dτ
≤−θ

2

3
, (3.44)
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where we have used that both the shear and the rotation vanishes. Equation (3.44) in-
dicates that the volume expansion of the congruence must be necessarily decreasing
along the time-like geodesic. Integrating, we get:

1

θ
≥ 1

θ0
+ τ

3
, (3.45)

where θ0 is the initial value of the expansion. Then, θ→−∞ in a finite proper time
τ ≤ 3/|θ0|. This means that once a convergence occurs in a congruence of time-
like geodesics, a caustic must develop in the space-time model. The non space-like
geodesics are in such a case inextendible.

A closely related theorem is due to Hawking (1967):

Theorem Let (M, gab) a time-oriented space-time satisfying the following condi-
tions:

1. RabV aV b ≥ 0 for any non space-like V a .
2. There exists a compact space-like hypersurface Σ ⊂M without edge.
3. The unit normals to Σ are everywhere converging (or diverging).

Then, (M, gab) is time-like geodesically incomplete.

Singular space-time models can be classified in accordance with the kind of ex-
tension they admit. A Ck-singular space-time model does not have Ck-extensions
of the manifold that allow incomplete curves to be extended. The index k measures
the strength of the singular character of the space-time model. The smaller k, the
stronger the singular feature (Clarke 1993).

Singularity theorems do not seem to apply to the Universe as a whole, since there
is increasing evidence that the energy conditions are violated on large scales (Reiss
et al. 1998; Perlmutter et al. 1999).
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Chapter 4
Accretion onto Black Holes

4.1 Introduction

Accretion is the process of matter falling into the potential well of a gravitating
object. The accretion of matter with no angular momentum is basically determined
by the relation between the speed of sound as in the matter and the relative velocity
vrel between the accretor and the medium. The accretion of matter with angular
momentum can lead to the formation of an accretion disk around the compact object.

We can distinguish four basic accretion regimes:

• Spherically symmetric accretion. It occurs when vrel � as and the matter in ac-
cretion does not have any significant angular momentum.

• Cylindrical accretion. The angular momentum of the medium remains small but
vrel ≥ as.

• Disk accretion. The total angular momentum of matter is enough as to form an
accretion disk around the accretor.

• Two-stream accretion. A quasi-spherically symmetric inflow of matter coexists
with an accretion disk.

The hydrodynamic description of accretion (or any other physical process) is
valid if the mean free path of the particles in the medium is shorter than the typical
size scale of the system. In the case of accretion the self-gravitation of the fluid is
usually negligible, so the characteristic length scale is, as we shall see, the gravita-
tional capture radius or accretion radius Raccr. This quantity is roughly equal to the
distance to the accretor at which the kinetic energy of an element of matter is of the
order of its gravitational energy,

1

2

(
a2

s + v2
rel

)= GM

Raccr
. (4.1)

Here M is the mass of the accretor. Hence,

Raccr ≈ 2GM

a2
s + v2

rel

. (4.2)
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If the hydrodynamic description of the flow is appropriate, the basic equations
that govern the accretion process are the equations for the conservation of mass
(or continuity equation) and the conservation of momentum. In the non-relativistic
regime these read

∂ρ

∂t
+∇ · (ρv)= 0 (4.3)

and

ρ

[
∂v
∂t
+ (v ·∇)v

]
=−∇P + ρ f+∇ · σ, (4.4)

respectively, where v is the velocity field of the flow, ρ is the mass density, P is the
pressure, and f is the sum of the forces per unit mass. The last term is the divergence
of the viscosity stress tensor1

σij = 2ητij , τij = 1

2

(
∂vi

∂xj
+ ∂vj
∂xi

− 2

3

∂vk

∂xk
δij

)
. (4.5)

The coefficient η is the dynamic viscosity; it is related to the coefficient of kinematic
viscosity ν as η= ρν. In the particular case of constant η the momentum conserva-
tion equation becomes

ρ

[
∂v
∂t
+ (v ·∇)v

]
=−∇P + ρf+ η∇2v+ 1

3
η∇(∇ · v). (4.6)

The momentum equation for an ideal fluid (with no viscosity) is generally called
Euler equation, whereas for a viscous fluid we speak of the Navier-Stokes equation.

In the most basic description, and provided that the self-gravity of the fluid can
be neglected, the only external force is the gravitational attraction of the accretor.
Then

f=−∇Φ =∇
(
GM

r

)
, (4.7)

where Φ is the gravitational potential and r is the distance to M .
The continuity equation and the equation of motion must be complemented with

an equation of state, that in a very general form we can write as

P = P(ρ). (4.8)

Finally, we need an equation for the energy balance in the flow. This equation
must consider the change in the kinetic plus the internal energy of an element of
fluid because of the action of the volume and surface forces acting on it, as well as
the possible flux of heat across the surface of the element. Using the equations for
the conservation of mass and momentum and the expression for the stress tensor

1There is a second term ηB(∇ · v)δij in the stress tensor. The coefficient ηB is the bulk viscosity,
that we shall assume to be zero.
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given above, it can be shown that the total time derivative2 of the internal energy e
per unit mass of the fluid is given by

ρ
de

dt
=−P∇ · v+ 2η

[
SijSij − 1

3
(∇ · v)2

]
+Q, (4.9)

where Q is the net heat exchanged by the element of fluid per unit time per unit
volume, and

Sij = 1

2

(
∂vi

∂xj
+ ∂vj
∂xi

)
= τij − 1

3
(∇ · v)δij . (4.10)

The quantity

q+ = 2η

[
SijSij − 1

3
(∇ · v)2

]
(4.11)

represents, then, the rate of energy dissipation per unit volume due to the work done
by the viscous forces.

A key parameter in the study of accretion flows is the mass accretion rate Ṁ ,
defined as the mass per unit time captured by the gravitating center. In a general
manner, we can write it as

Ṁ = σGρvrel (4.12)

where σG is the cross section of gravitational capture. This cross section depends
strongly on the nature of the gas. If the gas is made of collisionless non-relativistic
particles, the gravitational capture cross section in a Schwarzschild black hole is
(e.g. Shapiro and Teukolsky 1983; Frolov and Novikov 1998)

σG(collisionless) = 4π

(
c

v∞

)2

R2
Schw, (4.13)

where v∞� c is the velocity of the particles relative toM at infinity. If, on the other
hand, the medium can be modeled as a fluid, we shall later see that

σG(fluid) ≈ πR2
grav. (4.14)

Then

σG(collisionless)

σG(fluid)
∝
(
c

v∞

)2(
RSchw

Rgrav

)2

� 1. (4.15)

Under typical conditions in the interstellar medium the capture cross section for
accretion of a fluid is about a million times that for the accretion of collisionless
particles.

2It is a common practice in the study of fluid dynamics to work with the total or material derivative
of a function f (x, t), defined as df/dt = ∂f/∂t+(v ·∇)f . The second term is called the convective
derivative.
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4.2 Spherically Symmetric Accretion

4.2.1 The Bondi Solution

Bondi (1952) was the first to obtain the steady, spherically symmetric solution for
accretion onto a mass M at rest with respect to the surrounding medium.

In spherical coordinates (taking the position of M at r = 0) Eqs. (4.3) and (4.4)
for an ideal fluid (with η= 0) read

1

r2

d

dr

(
r2ρv

)= 0 (4.16)

and

v
dv

dr
+ 1

ρ

dP

dr
+ GM

r2
= 0, (4.17)

where v= vr̂ is the radial velocity of the flow considered positive inwards.
Let ρ∞, P∞, and v∞ = 0 be the density, pressure, and velocity of the medium at

infinity, respectively. We shall assume that the gas satisfies a polytropic equation of
state

P = P∞
(
ρ

ρ∞

)γ
, (4.18)

where 1 ≤ γ ≤ 5/3 is a constant. In particular, γ = 1 and γ = 5/3 represent an
isothermic and an adiabatic flow, respectively. From Eq. (4.18) we obtain an expres-
sion for the speed of sound,

a2
s = γ

P

ρ
= a2∞

(
ρ

ρ∞

)γ−1

, (4.19)

where a∞ is the speed of sound at infinity.
Equation (4.16) can be immediately integrated. Since ρv is the flux of matter, we

can write

Ṁ = 4πr2vρ, (4.20)

where Ṁ is a constant that we identify with the mass accretion rate.
With the help of Eq. (4.16) and the definition of the speed of sound, Eq. (4.17)

can be cast in a convenient form

1

2

(
1− a

2
s

v2

)
dv2

dr
=−GM

r2

(
1− 2a2

s r

GM

)
. (4.21)

As as remains finite for r →∞, the right-hand side of Eq. (4.21) is positive for
large radii and increases as r→ 0. Unless a2

s >GM/2r for all r , it vanishes at

rs = GM

2a2
s (rs)

. (4.22)
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Fig. 4.1 Mach number
squared M2 = (v/as)

2 as a
function of the adimensional
radial coordinate r/rs, for
γ = 7/5

We shall call rs the sonic radius. The left-hand side of Eq. (4.21) must also vanish
at r = rs. This implies that either

v2(rs)= a2
s (rs) (4.23)

or

dv2

dr
(rs)= 0. (4.24)

The characteristics of the solution of Eq. (4.21) depend on the behavior at the
sonic radius and the boundary conditions imposed at r→∞ and r→ 0. There are
six types of solutions:

1. v2(rs)= a2
s (rs) and v2 → 0 for r→∞

2. v2(rs)= a2
s (rs) and v2 → 0 for r→ 0

3. dv2

dr
(rs)= 0 and v2(r) < a2

s (r)

4. dv2

dr
(rs)= 0 and v2(r) > a2

s (r)

5. dv2

dr
(rs)→∞ at v2 = a2

s (rs) and r > rs

6. dv2

dr
(rs)→∞ at v2 = a2

s (rs) and r < rs

Some solutions for different values of Ṁ are shown in Fig. 4.1. At fixed γ , there
is only one solution of types 1 and 2. As we shall see, the value of the accretion rate
in these cases is not a free parameter, but it is uniquely determined by the boundary
conditions and the mass of the accretor; we call this critical value Ṁcr. For Ṁ < Ṁcr

there is an infinite number of solutions of type 3 and 4, and infinite solutions of
type 5 and 6 for Ṁ > Ṁcr.

Solutions of type 5 and 6 are double-valued and therefore not physically mean-
ingful. They can represent, however, part of the solution for some range of r if a
shock front develops in the flow. Since we look for a solution with v∞ = 0, we also
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exclude types 2 and 4. Only solutions of type 1 and 3 satisfy the boundary condition
that the flow is at rest at infinity. Solutions of type 3 are subsonic, that is v2 < a2

s for
all radius. They describe a slow accretion flow that settles to equilibrium, but also
a slow wind if v < 0. That of type 1 is the only transonic accretion solution—the
velocity becomes supersonic for r < rs. We can find the expression for the accretion
rate Ṁcr that corresponds to this solution as follows.

For γ > 1, the integration of the Euler equation (4.17) yields

v2

2
+ a2

s

γ − 1
− GM

r
= a2∞
γ − 1

, (4.25)

where we used that v∞ = 0 and the equation of state. Equation (4.25) is called the
Bernoulli equation or Bernoulli integral, and states the conservation of energy for
the fluid. Evaluating it at the sonic radius we find that

a2
s (rs)= a2∞

(
2

5− 3γ

)
. (4.26)

To obtain the density at the sonic radius we use Eq. (4.19). Then

ρ(rs)= ρ∞
[
as(rs)

a∞

] 2
γ−1 = ρ∞

(
2

5− 3γ

) 1
γ−1

. (4.27)

Notice that for γ = 5/3 the density and the speed of sound tend to infinity at the
sonic radius, that shifts to the origin. The critical accretion rate now follows from
Eq. (4.20),

Ṁcr = πG2M2ρ∞a−3∞
(

2

5− 3γ

) 5−3γ
2(γ−1)

. (4.28)

The accretion rate is then fixed by M and only two boundary conditions, ρ∞ and
a∞ for instance; its dependence on γ is rather weak.

Combining Eqs. (4.19) and (4.20) gives the velocity of the gas in terms of the
speed of sound,

v(r)= Ṁ

4πρ∞r2

[
a∞
as(r)

] 2
γ−1

. (4.29)

Inserting this in the Bernoulli equation yields an algebraic equation for as(r). Once
the speed of sound is known, the density and the velocity profiles follow from
Eqs. (4.19) and (4.29), respectively.

The case of an isothermal flow with γ = 1 must be analyzed separately. The
Bernoulli equation now involves a logarithmic term

v2

2
+ a2∞ lnρ − GM

r
= a2∞ lnρ∞. (4.30)
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It can be shown (see Bondi 1952) that the critical accretion rate in this case is simply
the limit of Eq. (4.28) when γ → 1,

Ṁ
(γ=1)
cr = e3/2πG2M2ρ∞a−3∞ . (4.31)

Without solving the problem completely some general conclusions may be
drawn. Let us define the accretion radius as

raccr = 2GM

a2∞
. (4.32)

For r� raccr the velocity, the speed of sound, and the density behave as

v ≈ a∞
16

[
2

5− 3γ

] 1
2 (

5−3γ
γ−1 )

(
raccr

r

)2(
1− 1

2

raccr

r

)
≈ 0, (4.33)

as ≈ a∞
[

1+
(
γ − 1

4

)
raccr

r

]
≈ a∞, (4.34)

ρ ≈ ρ∞
(

1+ 1

2

raccr

r

)
≈ ρ∞. (4.35)

In the region r � raccr, then, the influence of the gravitational potential is weak
and the variables approximately keep their values at infinity. We can interpret the
accretion radius as that where the thermal and the gravitational energy of the gas are
comparable,

[
ρa2

s (raccr)

2

][
ρGM

raccr

]−1

∼ 1. (4.36)

For r� rs the flow is supersonic. From the Bernoulli equation we now get

v ≈
(

2GM

r

)1/2

= vff, (4.37)

where vff is the free-fall velocity. This is because the underlying layers do not affect
the entrained matter. The density profile in this region follows from the continuity
equation

ρ ≈ ρ(rs)
(
rs

r

)3/2

, (4.38)

whereas the temperature can be obtained from the equation of state of an ideal gas

T ≈ T (rs)
(
rs

r

) 3
2(γ−1)

. (4.39)

Notice, however, that when the temperature is high enough the flow will start to
radiate and cool. If the effect of radiation is to be taken into account, then we must
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add the second law of thermodynamics to Eqs. (4.16) and (4.17). The variation of
the internal energy per unit mass of the gas is

de= dQ− PdV, (4.40)

where V = 1/ρ is the specific volume and dQ is the heat exchanged per unit mass.
For an ideal monoatomic gas or a fully ionized plasma we have

3k

2μmp

dT

dt
= k

μmp

T

ρ

dρ

dt
− αffT

1/2ρ + dQ
dt
. (4.41)

Here k is the Boltzmann constant, mp is the mass of the proton, and μ is the mean
molecular weight of the gas. The second term on the right-hand side is due to
Bremsstrahlung (free-free) radiation (αff ≈ 5× 1020 erg cm3 g−2 s−1 K−1/2 for Hy-
drogen), and the third term takes into account other possible radiative losses. Using
dr = vdt and recalling Eqs. (4.37) and (4.38), we can obtain the equation for the
temperature distribution in a steady-state spherically symmetric accretion flow

dT

dr
=−T

r
− αff ρ(rs)

(
rs

2GM

)1/2
T 1/2

r
+ 2μmp

3k

dQ

dr
. (4.42)

If there are no additional radiation losses besides free-free radiation, Eq. (4.42)
can be solved to obtain

T =
[
K ln

(
r

RG

)
+ T 1/2∞

]2

, (4.43)

where we have assumed that at R = RG the temperature is T∞. Equation (4.43)
shows that under such conditions the temperature decreases as the flow approaches
the black hole. A flow that behaves in this way is called a cooling flow.

The radial free fall time is

tff ≈ r

vff
∝ r3/2, (4.44)

whereas the cooling time for Bremsstrahlung losses (dQ/dT ∝ T 1/2ρ) is3

tcool,Br ≈ 3kT /2μmp
αffT 1/2ρ

∝
√
T

ρ
≈ r. (4.45)

Comparing both timescales we see that the relative role of cooling decreases as the
black hole is approached.

3Notice that T ∝ r−1 and ρ ∝ r3/2.
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4.2.2 The Eddington Limit

Close to the black hole there could be sources of radiation, for example if a mag-
netic field and dissipation of angular momentum are involved. The outgoing radia-
tion will pass through the accretion flow and may influence its dynamics. Consider
a gas formed by ionized Hydrogen, and let σ be the cross section of interaction of
the emitted radiation with matter. If the luminosity of the source is L, the number
of photons that cross a sphere of radius r per unit area per unit time is L/4πr2Eγ ,
where Eγ is the mean energy of the photons. This radiation field carries an outgo-
ing flux of momentum L/4πr2c. The number of collisions between photons and
particles at r is proportional to σ . Each particle experiences then a force

Frad = σL

4πr2c
, (4.46)

equal to the rate at which it absorbs momentum from the photons.
We can, to proceed further, assume that radiation interacts mainly with the elec-

trons via Compton scattering, so that σ = σT ≈ 0.66 × 10−24 cm2. Protons are
dragged outwards by the electrons since the two species are coupled through the
Coulombian attraction. The attractive gravitational force on each proton (we neglect
the contribution of electrons since they are much less massive) at r is

Fgrav = GMmp
r2

. (4.47)

Then, if the luminosity equals

LEdd ≡ 4πGMmpc

σ
(4.48)

the gravitational force and the radiation force are balanced and spherical accretion is
stopped. This critical luminosity is called the Eddington luminosity of the accreting
source. In the case of Thomson scattering (σ = σT) it takes the value

LEdd ≈ 1.3× 1038
(
M

M�

)
erg s−1. (4.49)

Associated with the critical luminosity we can define the Eddington accretion rate
as

ṀEdd = LEdd

c2
≈ 0.2× 10−8

(
M

M�

)
M� yr−1. (4.50)

The Eddington temperature TEdd is the characteristic temperature of a blackbody of
radius equal to the Schwarzschild radius that radiates at L= LEdd,

TEdd =
(

LEdd

4πσSBR
2
Schw

)
≈ 6.6× 107

(
M

M�

)−1/4

K. (4.51)
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Another way to inhibit spherical accretion is the production of winds or particle
ejections in the inner regions of the accretion flow. If Lej is the power carried away
by the ejected particles and vej is their velocity, the pressure exerted on the infalling
matter will be

Pej = Lej

4πR2vej
. (4.52)

If the central source ejects particles before the onset of the spherical accretion,
we can estimate the critical luminosity in ejected particles equating pressures at the
accretion radius. This gives

Lej

4πr2
accrvej

≈ ρ∞a2∞ ≈
Ṁa∞
πr2

accr
. (4.53)

From here we get

Lcrit
ej ≈ 4Ṁa∞vej. (4.54)

In general, only a fraction η of the accretion power is released as radiation, i.e.

L= ηṀc2, (4.55)

then

Lcrit
ej ≈ 4

L

η

(
a∞vej

c2

)
. (4.56)

We see that a weak wind can halt spherical accretion.

4.3 Cylindrical Accretion

4.3.1 Bondi-Hoyle-Lyttleton Model

The problem of axisymmetric accretion (usually called Bondi-Hoyle or Bondi-
Hoyle-Lyttleton accretion) is that of determining the accretion rate onto a moving
gravitating center. Unlike the case of spherical accretion, the problem is quite com-
plex and there are no analytical solutions to the hydrodynamic equations. 4

The first estimates of the accretion rate were obtained by Hoyle and Lyttleton
(1939) and Bondi and Hoyle (1944). To work out the problem it is convenient to
adopt a reference frame fixed to the accretor, a body of massM that for the moment
we assume to be point-like. The uniform velocity and density of the flow at infinity
are v∞ and ρ∞, respectively. The symmetry axis of the system is determined by the
direction of v∞ (or equivalently that of the direction of motion of the body). We
shall work in polar coordinates (r, θ) with r = 0 at the position of the accretor, see
Fig. 4.2.

4See, however, Foglizzo and Ruffert (1997, 1999) for some general analytical results.



4.3 Cylindrical Accretion 109

Fig. 4.2 Sketch of the geometry of a Bondi-Hoyle-Lyttleton axisymmetric accretion flow. The
path of an element of fluid (in the ballistic approximation) is shown and the relevant parameters of
the problem are indicated

In the approximation of Hoyle and Lyttleton (1939) the pressure of the gas is
neglected,5 so the trajectories of the elements of matter can be calculated using the
classical equations of motion for a particle in a Newtonian gravitational field,

d2r

dt2
− r

(
dθ

dt

)2

= −GM
r2
, (4.57)

r2 dθ

dt
= bv∞. (4.58)

The second equation states the conservation of angular momentum; b is the impact
parameter. The solution for the orbit r(θ) is (e.g. Bisnovatyi-Kogan et al. 1979)

r(θ)=
[
GM

b2v2∞
(1+ cos θ)− 1

b
sin θ

]−1

, (4.59)

whereas the two components of the velocity are given by

vr =−
(
v2∞ +

2GM

r
− b

2v2∞
r2

)1/2

(4.60)

and

vθ = bv∞
r
. (4.61)

It follows that matter reaches the θ = 0 axis at a radius

r = b
2v2∞

2GM
(4.62)

with a velocity

v=−v∞r̂ + 2GM

bv∞
θ̂ . (4.63)

5These amounts to assuming that the mean free path of the particles is much larger than the char-
acteristic length scale of the problem, given by the accretion radius and the size of the accretor.
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Fig. 4.3 Sketch of the
geometry of an axisymmetric
accretion flow in the
Bondi-Hoyle model. The
arrows indicate the direction
of the flow

Now, as matter coming from both sides approaches the symmetry axis, the den-
sity in this region increases and the effects of gas pressure cannot be ignored. Hoyle
and Lyttleton (1939) made the simplifying assumption that the transverse compo-
nent of the velocity vanishes on the θ = 0 axis due to collisions, whereas the radial
velocity is unchanged. If this is true, the energy per unit mass of the particles on the
axis is

E = 1

2
v2∞ −

2G2M2

b2v2∞
. (4.64)

For E < 0 the material cannot escape the gravitational pull of M . This means that
all matter on streamlines with impact parameter

b < RHL ≡ 2GM

v2∞
(4.65)

is accreted. The critical impact parameter RHL is called the Hoyle-Lyttleton radius.
The accretion rate then equals the mass flux at infinity through a circle of area πR2

HL
centered on the symmetry axis. This gives the Hoyle-Lyttleton accretion rate

ṀHL = πR2
HLv∞ρ∞ = 4πG2M2ρ∞v−3∞ . (4.66)

In the Hoyle-Lyttleton approximation accretion proceeds along an “accretion
line” (the θ = 0 axis) of infinite density. Bondi and Hoyle (1944) developed an
improved treatment of the problem in which the accretion region is not a line but an
“accretion column”, a wake formed upstream as seen from the gravitating body, see
Fig. 4.3. Outside the accretion column the gas is in ballistic motion, but the pressure
cannot be neglected inside the wake. The characteristic size of the accretion col-
umn is determined by the balance between the pressure exerted by the fluid on its
boundary from the inside and the transverse momentum flux of the matter entering
the column. The thickness of the transition region depends on ρ∞, and for large
densities it becomes a surface of discontinuity.

Bondi and Hoyle (1944) assumed that the mass per unit length per unit time
entering the accretion column is the same as in the Hoyle-Lyttleton approach. If we
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denote this quantity by A, then from Eq. (4.62)

2πbρ∞v∞db= 2πρ∞
GM

v∞
dr ≡Adr. (4.67)

Furthermore, it is assumed that the radial velocity of the matter when it enters the
column is still v∞. Two more suppositions are made: first, that the pressure gradient
along the symmetry axis can be neglected compared to the gravitational force and,
second, that the velocity v of the flow in the wake is uniform on any cross section
and parallel to the symmetry axis.

Under these approximations, Bondi and Hoyle (1944) showed that the equations
for the conservation of mass and the component of the momentum parallel to the
symmetry axis are

d

dr
(mv)=A (4.68)

and
d

dr

(
mv2)=Av∞ − mMG

r2
, (4.69)

where mdr is the mass per unit length on the symmetry axis. Appropriate boundary
conditions are v = v∞ for r→∞, v = 0 at r = r0, and that v remains bounded for
r �= 0.

Integration of Eq. (4.68) yields

mv =A(r − r0). (4.70)

The point r0 is an stagnation point, v(r0) = 0. Since m > 0, the flow is directed
towards M for r < r0 and away from M for r > r0. Thus only the material entering
the wake at r < r0 will be accreted. The accretion rate is then approximately given
by

ṀBH ≈Ar0 = 2παG2M2ρ∞v−3∞ , (4.71)

where we have defined α = r0v2∞/GM . Equations (4.68) and (4.69) plus the im-
posed boundary conditions are satisfied for any value of α. If, however, the extra
condition that the velocity v(r) is monotonic is demanded, then it follows from
Eq. (4.69) that α > 1.6

Based on the similarity of Eqs. (4.28) and (4.71), Bondi (1952) proposed an
interpolation expression for the accretion rate

Ṁ ≈ 2πG2M2ρ∞
(a2∞ + v2∞)3/2

. (4.72)

For a2∞� v2∞ it reduces to the accretion rate in the spherically symmetric case (for
γ = 3/2), whereas for v2∞ � a2∞ it matches the result of Bondi-Hoyle (for α = 1).

6See Edgar (2004) for a proof of this statement.
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Equation (4.72) is an estimate for Ṁ in an intermediate case. Other interpolation
formulas have been proposed based on the results of numerical simulations (e.g.
Shima et al. 1985).

4.3.2 Results of Numerical Simulations

A complete hydrodynamic treatment of axisymmetric accretion must be carried out
numerically. Numerical simulations are useful to address issues such as the depen-
dence of the flow pattern on the relevant parameters (the Mach number, the size of
the accretor, the polytropic index γ ), and its stability under perturbations.

Despite the many simplifications implied in its deduction, the Hoyle-Lyttleton
formula for the accretion rate, Eq. (4.66), is confirmed to order of magnitude by
the results of simulations of axisymmetric accretion flows under different physical
conditions.

The dynamics of the flow depend mainly on the value of the Mach number at
infinity M∞ = v∞/a∞. Subsonic flows (M∞ < 1) reach the steady state and after
crossing the sonic surface fall freely onto the accretor, much as in the case of Bondi
accretion. No shocks fronts develop. The behavior of supersonic flows at infinity
(M∞ > 1) is far more complex. The central result is that a shock wave develops; its
shape and position depend on the value of M∞ and γ .

Early 3D simulations (Ruffert and Arnet 1994; Ruffert 1994, 1995, 1996) showed
that for 4/3≤ γ ≤ 5/3 the shock is in front of the accretor and detached; it as a bow
shock. For γ ∼ 1, the shock moves towards the rear side of the accretor and gets
attached to it; it becomes a tail shock.

The size of the accretor is the third key parameter in the characterization of the
flow. If a large accretor (with a size comparable toRHL) is considered, Ruffert (1994,
1995) showed that for γ = 4/3–5/3 the shock is not a bow shock but a tail shock.7

Numerical calculations are limited in general by the size of the accretor: the
smaller the accretor the larger the velocity of the flow is in its surroundings, so that
smaller time steps are required and the simulations become very time-consuming.
The most recent 3D simulations of axisymmetric supersonic flows (Blondin and
Raymer 2012) considered accretor sizes of 0.05RHL and 0.01RHL. Color maps
for the Mach number and the mass flux onto the surface of accretor are shown in
Fig. 4.4.

The stability of a Bondi-Hoyle-Lyttleton accretion flow is an issue still under dis-
cussion. Several types of instabilities have been observed in numerical simulations,
but the physical mechanisms leading to some of them are not well understood. Fur-
thermore, it is not clear if they are real or a numerical artifact. A critical review of the
different instabilities that have been proposed to operate in a Bondi-Hoyle-Lyttleton
flow is presented in Foglizzo et al. (2005).

7In 2D simulations the shock is always attached to the accretor, although calculations by Foglizzo
et al. (2005) suggest that it should get detached for γ ∼ 3.
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Fig. 4.4 Mach number
downstream the shock front
in two orthogonal planes
containing the symmetry axis,
for sizes of the accretor
0.05RHL (top) and 0.01RHL
(bottom). The flow is incident
from the right. The colors on
the surface of the accretor
represent the value of the
mass flux on it. Notice that
most of the accretion occurs
downstream the accretor. In
the case of the smallest
accretor the position of the
bow shock oscillates
quasi-periodically, although
without disrupting the axial
symmetry of the flow. From
Blondin and Raymer (2012).
Reproduced by permission of
the AAS

Perhaps the most spectacular (and much studied) type of instability is the so-
called “flip-flop”instability: the accretion wake flips from side to side of the accretor
with the formation of a transient accretion disk (see Fig. 4.5). There is a peak in the
accretion rate every time the disk disappears. This instability has been observed in
axisymmetric and non axisymmetric planar simulations in 2D (e.g. Matsuda et al.
1987; Fryxell and Taam 1988; Shima et al. 1998; Blondin and Pope 2009). A weaker
version appeared in 3D simulations for small accretors performed by Ruffert and
Arnet (1994), but not in those of Blondin and Raymer (2012). As pointed out by
Edgar (2004), it is possible that the flip-flop instability is an artifact of 2D planar
numerical simulations (in which the accretor is a cylinder and not a sphere) and
does not occur in 3D.

If the accretor is a black hole the simulations must be carried out in the fully
relativistic regime, at least close to the event horizon. This accretion regime has
been studied by Petrich et al. (1989) and Font and Ibáñez (1998a, 1998b) in the
Schwarzschild space-time, and by Font et al. (1999) and Penner (2011) for a Kerr
black hole. The main difference with simulations in a Newtonian gravitational field
is that the flow always settles to the steady state and no instabilities are found, even
for non-axisymmetric asymptotic boundary conditions. It must be noticed, however,
that for the large accretor sizes these authors considered (∼0.5–2RHL) the flow is
expected to be stable even in the non-relativistic case. Recently, Zanotti et al. (2011)
performed simulations in the relativistic regime including radiation effects where,
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Fig. 4.5 Flip-flop instability in a planar flow. The accretion shock flips from one side to another
of the accretor in the first two frames. Eventually a transient accretion disk is formed as seen in the
last frame. From Blondin and Pope (2009). Reproduced by permission of the AAS

under some particular initial conditions, flow patters reminiscent of the flip-flop
instability develop.

4.3.3 Wind Accretion in Binary Systems

The original motivation for the study of axisymmetric accretion was the accretion
of matter onto the Sun due to its motion in the interstellar medium. Since then, the
Bondi-Hoyle-Lyttletlon model has been applied to study many other astrophysical
systems. These include accretion onto protostars (e.g. Bonnell et al. 2001; Bonnell
and Bate 2002; Padoan et al. 2005) and accretion by galaxies inside clusters (e.g.
Stevens et al. 1999; Sakelliou 2000; Schulreich and Breitschwerdt 2011). Accretion
is also expected to be approximately axisymmetric in binaries embedded in a com-
mon envelope (see Taam and Sandquist 2000 for a review) and wind-fed binaries
(e.g. Shapiro and Lightman 1976; Theuns et al. 1996; Soker 2004; de Val-Borro
et al. 2009).

Wind accretion takes place, for example, in binary systems formed by an O or
B-type star and a compact object (neutron star or black hole). In such systems the
compact object accretes matter from the wind of the non-collapsed star. The typical
velocity of the wind of an early-type star is a few times 103 km s−1, much larger than
the speed of sound in the interstellar medium as ∼ 100 km s−1. Under these condi-
tions, the effects of pressure can be neglected and the accretion radius approximated
by the Hoyle-Lyttleton formula (Shapiro and Lightman 1976),

Raccr ≈ 2GM

v2
rel

, (4.73)

where M is the mass of the compact object and vrel its velocity relative to the wind

v2
rel ≈ v2

c + v2
w. (4.74)

Here vc is the velocity of the compact object relative to the donor star and vw the ve-
locity of the wind. Because of the orbital motion, the wake develops in the direction
of the relative velocity, see Fig. 4.6.
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Fig. 4.6 Wind accretion in a binary system in the Bondi-Hoyle-Lyttleton regime. Adapted from
Frank et al. (2002)

Matter within a cylinder of radius ∼ Raccr centered in the symmetry axis is cap-
tured by the compact object, so we can estimate the accretion rate as

Ṁ ≈ πR2
accrρwvrel = 4πG2M2ρwv

−3
rel , (4.75)

where ρw is the mass density of the wind at the position of the compact object. It
is interesting to compare this accretion rate with the mass loss rate Ṁ∗ of the donor
star,

Ṁ

Ṁ∗
≈ πR

2
accrρwvrel

4πR2
orbρwvw

= 1

4

(
Raccr

Rorb

)2(
vrel

vw

)
. (4.76)

Here Rorb is the orbital separation of the binary. We can estimate this ratio for the
black hole binary Cygnus X-1. This system is composed by a black hole of mass
M ≈ 14.5M�, and an O-type star of mass M∗ ≈ 19.2M� and radius R∗ ≈ 16.4R�
(Orosz et al. 2011). The orbital period is Porb ≈ 5.6 d (Brocksopp et al. 1999).
Using Kepler’s law to calculate the orbital separation (assuming a circular orbit) and
taking the wind velocity equal to the escape velocity of the star, we get Ṁ ≈ 0.01Ṁ∗
for Cygnus X-1. In general, Ṁ/Ṁ∗ ≈ 10−4–10−3 for typical parameters of X-ray
binaries, so that a small fraction of the matter in the wind is accreted.

Detailed 3D Smoothed Particle Hydrodynamics (SPH) simulations of wind ac-
cretion in binaries have been carried out by Okazaki et al. (2008). They applied the
model to estimate the accretion rate in the gamma-ray binary LS 5039 and assess
the possibility that the matter accreted from the wind might feed a jet launched from
the black hole. Figure 4.7 shows the spatial distribution of mass density in some of
the simulations. A strong bow-show forms behind the black hole; its shape is dis-
torted, specially at periastron, because of the large velocity of the black hole relative
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Fig. 4.7 Logarithmic mass density distribution in a simulation of wind accretion in the gamma-ray
binary LS 5039 at periastron (orbital phase φ = 0). In the left panel, the large white circle repre-
sents the donor star and the small white dot the black hole. The right panel shows a close-up of the
surroundings of the black hole. The dashed circle is the accretion radius, calculated as in Eq. (4.73)
with vw = 1200 km s−1 and M = 3.7M�. The white line indicates the direction towards the star.
The arrows represent the velocity field of the flow. Lengths are measured in units of the semi-ma-
jor axis of the orbit a. The number of particles in each simulations is NSPH. From Okazaki et al.
(2008)

to the star. The velocity field reveals that the flow is essentially as in the Bondi-
Hoyle-Lyttletlon model: matter coming closer to the black hole than the accretion
radius is focused and accreted. The mass accretion rate predicted by the simula-
tions (∼2× 1015–1016 g s−1) is in very good agreement (only slightly lower) with
the Hoyle-Lyttleton value, Eq. (4.75). The difference has to do with the increase of
vrel because of the acceleration of the wind by the gravitational pull of the compact
object.

Wind accretion in binaries, however, cannot be purely of the Bondi-Hoyle-
Lyttleton type: due to the orbital motion the accretion flow has a net angular mo-
mentum different from zero. This might lead to the formation of an accretion disk,
as we discuss next.

4.4 Disk Accretion

In most realistic astrophysical situations the matter captured by a gravitational field
has a total non-zero angular momentum. The accretion of matter with angular mo-
mentum onto a black hole may lead to the formation of an accretion disk. The main
difficulty in the formulation of a consistent theory of accretion disks lies in the lack
of knowledge on the nature of turbulence in the disk and, therefore, in the estimate
of the dynamic viscosity.

We shall consider accretion disks in steady state where the accretion rate is an
external parameter and the characterization of the turbulence is provided by a single
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parameter: the so-called α parameter, introduced by Shakura (1972) and Shakura
and Sunyaev (1973).

4.4.1 Basic Equations

We start by revising the conditions under which an accretion disk may form. Let
J be the angular momentum per unit mass of an element of plasma when it gets
trapped in the gravitational field of an accreting body of mass M . Assuming that
the plasma loses energy faster than angular momentum, matter will drift to the orbit
with the lowest energy compatible with the value of J . This is a circular Keplerian
orbit of radius

Rcirc = J 2

GM
, (4.77)

called the circularization radius. An accretion disk can form if Rcirc is larger than
the effective size of the accretor, for example the radius of the innermost stable
circular orbit around a black hole or the radius of the magnetosphere in a neutron
star.

As it falls onto the accretor the plasma heats at the expense of its rotational and
gravitational energy, but it also transfers angular momentum outwards due to inter-
nal torques. The characteristics of the disk strongly depend on the efficiency of the
dissipation of energy and angular momentum. Collectively, the dissipation mecha-
nisms are loosely termed “viscosity”. If the typical timescale of energy dissipation
is much shorter than the timescale of angular momentum redistribution, matter will
slowly spiral towards the compact object in a series of approximately circular orbits,
forming an accretion disk.

The velocity of an element of plasma in the disk has a tangential component vφ
and a small radial component vR . The angular velocity of the disk isΩ(R)= vφ/R,
not necessarily equal to the Keplerian value

ΩK(R)=
(
GM

R3

)1/2

. (4.78)

The complete structure of the disk is found solving the hydrodynamic equations
for mass, energy, and momentum conservation. We shall adopt the following sim-
plifying assumptions:

1. the disk is axisymmetric, i.e. ∂/∂φ = 0,
2. the disk is thin, i.e. its characteristic size scale in the z-axis is H � R (see

Fig. 4.8),
3. the matter in the disk is in hydrostatic equilibrium in the z-direction, and
4. the self-gravitation of the disk is negligible.

The thin disk approximation greatly reduces the complexity of the problem. Un-
der this approximation the dependence on z of all variables except the mass density
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Fig. 4.8 Sketch of a thin
accretion disk. The black dot
indicates the position of the
black hole

ρ(R, z) may be ignored. The hydrodynamic equations are then integrated in the
z-direction to write them in terms of the surface density

Σ(R)= 2
∫ H

0
ρ(R, z)dz. (4.79)

This procedure applied to the equation for the conservation of mass gives

∂Σ

∂t
+ 1

R

∂

∂R
(RΣvR)= 0. (4.80)

The equation for momentum conservation in the z-direction is very simple due
to the assumption of hydrostatic equilibrium and the thin disk approximation. The
only external force on the plasma is the gravitational attraction of the mass M , then

1

ρ

∂P

∂z
=−∂Φ

∂z
≈−GM

R3
z. (4.81)

Here we have used that the gravitational potential is Φ = −GM/√R2 + z2. The
half-thickness H of the disk may be estimated from Eq. (4.81). Writing !z ≈ H
and P = ρa2

s , we get

H ≈ as

ΩK
. (4.82)

The condition H � R thus implies that the Keplerian tangential velocity must be
supersonic

as �
√
GM

R
. (4.83)
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The z-integrated equation for the conservation of momentum in the radial direc-
tion reads

∂vR

∂t
+ vR ∂vR

∂R
=− 1

Σ

∂P

∂R
+ v

2
φ

R
− ∂Φ
∂R

+ 1

Σ

[
∂

∂R
(RTRR)− Tφφ

]
, (4.84)

where TRR and Tφφ are two components of the stress tensor averaged over z. An
usual approximation is to neglect the pressure gradient in the radial direction. Fur-
thermore, since we expect that vR � vφ , the strongest viscous forces are exerted
between two adjacent annulus of the disk. This component of the force per unit area
is represented by the TRφ component of the stress tensor, so we shall assume that
TRR = Tφφ = 0. Equation (4.84) then simplifies to

∂vR

∂t
+ vR ∂vR

∂R
= v

2
φ

R
− ∂Φ
∂R
. (4.85)

Finally, we have to write down the z-averaged momentum equation in the φ
direction. This is

∂vφ

∂t
+ vR
R

∂

∂R
(Rvφ)= 1

R2Σ

∂

∂R

(
R2TRφ

)
. (4.86)

The left-hand side represents the variation of the angular momentum per unit mass
and the right-hand side the internal torques generated by viscous forces.

The form of the stress tensor depends on the mechanism of angular momentum
dissipation. If the torques are generated only by shear viscosity

TRφ = νΣR∂Ω
∂R
, (4.87)

where ν is the coefficient of kinematic viscosity.8 This is not expected to be a re-
alistic approximation, since accretion disks are prone to develop instabilities and
become turbulent. In particular, the magneto-rotational instability studied by Bal-
bus and Hawley (1991) might be a very efficient mechanism of angular momentum
transport.

We can try to guess a general expression for the stress tensor based on dimen-
sional arguments. The z-integrated component of the stress tensor has dimensions
of pressure times length. The simplest expression for TRφ is then

TRφ ≈−αΣa2
s , (4.88)

where α is a constant and Σas is the z-integrated isothermal pressure. Equa-
tion (4.88) is the famous “α-prescription” introduced by Shakura (1972) and

8Notice that for a disk in rigid rotation ∂Ω/∂R = 0 and the internal torques vanish.
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Shakura and Sunyaev (1973). It is possible to relate α to an effective viscosity. Un-
der the thin disk approximation and assuming that the angular velocity is Keplerian,
equating Eqs. (4.87) and (4.88) yields

ν ≈ αasH. (4.89)

Notice that since we are dealing with z-averaged equations, what we denote by ν is
in fact an averaged kinematic viscosity

ν ≡ 〈ν〉 = 2

Σ

∫ H

0
ρ(R, z)ν(R, z)dz. (4.90)

Equation (4.89) is useful to put a loose constraint on the value of α. In a turbulent
flow the kinematic viscosity is approximately given by (e.g. Landau and Lifshitz
1987)

ν ≈ vturblturb, (4.91)

where vturb is the velocity and lturb the largest size of the turbulent cells. In an accre-
tion disk lturb cannot exceed the height scale H , and the speed vturb is expected to
be subsonic—otherwise turbulence would be likely dissipated through shocks. This
implies that α � 1.

An expression for the stress tensor (the α-prescription or other) must be supplied
to solve the set of hydrodynamic equations for an accretion disk. Some general
results, however, can be obtained without doing this explicitly. For example, we can
solve Eqs. (4.80) and (4.86) assuming that the accretion flow has reached the steady
state. From the continuity equation we immediately obtain that

Ṁ =−2πRΣvR, (4.92)

where, as usual, Ṁ is the mass accretion rate, and we have taken vR < 0 inwards.
Integration of Eq. (4.86) gives

ṀΩR2 =−2πR2TRφ +C. (4.93)

The constant C is fixed by the boundary conditions imposed on the stress tensor. If
there exists a radius Rin where TRφ(Rin)= 0, then C = ṀΩ(Rin)R

2
in and

TRφ =− 1

2π
ṀΩK

(
1−

√
Rin

R

)
, (4.94)

where we have assumed that the angular velocity is Keplerian. If the accretor is a
black hole we can take Rin as the radius of the of innermost circular stable orbit,
Rin =Risco. Another case where the zero-torque boundary condition can be ap-
plied is when the accretor is a rotating star of radius R∗, such that its equatorial
angular velocity Ω∗ satisfies Ω∗(R∗) < Ω(R∗). The angular velocity of the disk
(that increases inwards) must reach a maximum at a certain Rin and then decrease
to match Ω∗(R∗). At R = Rin the component TRφ of the stress tensor vanishes
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(since ∂Ω/∂R(Rin) = 0) and so we again recover the result in Eq. (4.94). The re-
gion R∗ < R < Rin is called a boundary layer. If the disk is thin the width of the
boundary layer is !R� R∗, so in practice we can use that Rin = R∗ +!R ≈ R∗,
neglecting corrections of order !R/R∗.

4.4.2 The Radiative Spectrum of a Thin Disk

The most important result we can obtain without a detailed model for the viscosity is
the value of the total luminosity of the disk. Writing the stress tensor as in Eq. (4.87),
the expression for the rate of energy dissipation per unit volume due to viscous
forces that results from Eq. (4.11) is

q+ = ρν
(
R
dΩ

dR

)2

. (4.95)

Assuming thatΩ =ΩK and using Eq. (4.90) we can find the rate of energy dissipa-
tion per unit area on each face of the disk,

Q+ =
∫ H

0
q+dz= 9

8

GM

R3
νΣ. (4.96)

Now, if the stress tensor is parameterized as in Eq. (4.87) and using Eq. (4.94) we
get

Q+(R)= 3GMṀ

8πR3

(
1−

√
Rin

R

)
. (4.97)

The rate of energy dissipation due to viscous forces is then independent of the vis-
cosity. If all this energy is radiated away, integrating Q+ over the two faces of the
disk from the inner radius Rin to the outer radius Rout, gives the total luminosity

Ld = 2× 2π
∫ Rout

Rin

Q+(R)RdR = 3GMṀ

2Rin

[
1

3
− Rin

Rout

(
1− 2

3

√
Rin

Rout

)]
. (4.98)

In the limit Rout �Rin,

Ld ≈ GMṀ
2Rin

. (4.99)

This represents exactly a half of the gravitational energy lost by the accretion flow
when it reaches the inner radius of the disk. The other half is still retained by the
matter as kinetic energy; it is eventually liberated when the flow impacts on the
surface of the star, or engulfed if the accretor is a black hole.

Adopting Rin = 6Rgrav and dividing by Ṁc2 we get that the efficiency of energy
release of disk accretion onto a Schwarzschild black hole is ∼8 %. For a co-rotating
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disk around an extreme Kerr black hole, where Rin = Rgrav, the efficiency reaches
∼42 %.

It is interesting to examine the local energy balance in the disk. The energy per
unit time dissipated in an annulus of width !R is

!Ld = 4πQ+R!R = 3GMṀ

2R2

(
1−

√
Rin

R

)
!R, (4.100)

whereas the gravitational energy lost by the matter per unit time in the same annulus
is (GMṀ/R2)!R. A half of this energy turns into kinetic energy, so only a fraction

!Lgrav = GMṀ
2R2

!R (4.101)

is available to be dissipated. Then we have

!Ld −!Lgrav = GMṀ
R2

(
1− 3

2

√
Rin

R

)
!R. (4.102)

For R < (9/4)Rin the energy flux through the surface of the annulus is less than
a half of the gravitational energy lost by the accretion flow. The excess is trans-
ported outwards as work exerted by viscous forces and dissipated in the region
R > (9/4)Rin, where the surface energy flux is larger than a half the rate of change
of gravitational energy. When the whole disk is considered, the energy balance in
both regions compensate and we get exactly the result in Eq. (4.99).

If the disk is optically thick in the z-direction, every element of area on its sur-
face radiates as a blackbody at the local effective surface temperature T (R). The
temperature profile is found recalling that for a blackbody the energy radiated per
unit area is σSBT

4, where σSB is the Stefan-Boltzmann constant. Then

T (R)=
[
Q+(R)
σSB

]1/4

=
(

3GMṀ

8πσSBR3

)1/4(
1−

√
Rin

R

)1/4

. (4.103)

For R�Rin the temperature has the characteristic dependence

T (R)≈ Td

(
R

Rin

)−3/4

, (4.104)

where

Td =
(

3GMṀ

8πσSBR
3
in

)1/4

. (4.105)

Sticking to the blackbody assumption, the emissivity per unit frequency Iν of
each element of area on the disk is described by the Planck function

Iν(ν,R)= Bν(ν,R)≡ 2hν3

c2[exp(hν/kT )− 1] . (4.106)
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Fig. 4.9 Spectral energy
distribution of a
geometrically thin, optically
thick accretion disk as a
function of the inner radius,
for M = 10M�,
T (Rin)= 106 K, θd = 30◦,
and d = 2 kpc. The inner
radius of the disk is given in
units of the gravitational
radius of the accretor,
Rgrav =GM/c2

Here h and k are the Planck constant and the Boltzmann constant, respectively. The
total flux at frequency ν detected by an observer at a distance d whose line of sight
forms and angle θd with the normal to the disk is then

Fν(ν)= cos θd

d2

∫ Rout

Rin

2πRIνdR. (4.107)

The shape of the spectral energy distribution predicted by Eq. (4.107) is shown
in Fig. 4.9. It is a superposition of blackbody spectra of temperature T (R). The flux
grows as Fν ∝ ν2 for photon energies hν� kT (Rout), and decreases exponentially
for hν � kT (Rin). For intermediate energies the spectrum has the characteristic
dependence Fν ∝ ν1/3. As T (Rout) approaches T (Rin) this part of the spectrum
narrows, and it becomes similar to that of a simple blackbody.

For a blackbody radiator the mean energy of the emitted photons is Eγ ≈ 2.7kT .
The position of the peak of the spectral energy distribution of the disk is then fixed
by the value of the maximum temperature Tmax on the surface. From Eq. (4.103) it
is easily checked that Tmax ≈ 0.5Td at Rmax = (46/39)Rin. For typical parameters
of a stellar-mass black hole binary (M = 10M�, Ṁ = 10−8M� yr−1) and taking
Rin = 6Rgrav, we get Tmax ≈ 3× 106 K and Eγ ≈ 1.6 keV. The model then predicts
that geometrically thin, optically thick disks in black hole binaries radiate X-rays.
This result is in very good agreement with observations, and constitutes the funda-
mental base of the success of the model.

4.4.3 The Local Structure of Thin Disks in the α-Prescription

Let us now revise the series of equations and approximations of the accretion disk
model we have outlined in the previous section.



124 4 Accretion onto Black Holes

The assumption that the disk is geometrically thin, i.e. H � R, allowed us to
work with height-averaged versions of most of the hydrodynamic equations. These
are written in terms of the surface mass density

Σ ≈ 2Hρ. (4.108)

The half-thickness of the disk can be estimated from the condition of hydrostatic
equilibrium in the vertical direction. This yields

H ≈ as

ΩK
, (4.109)

where we used

P = ρa2
s (4.110)

for the pressure.
In steady state, the integration of the averaged continuity equation is straightfor-

ward. If Ṁ is the mass accretion rate across an annulus of the disk, then

Ṁ =−2πRΣvR. (4.111)

From the conservation of momentum in the azimuthal direction and assuming
thatΩ =ΩK, we obtained an expression for the TRφ (the only non-zero) component
of the height-averaged stress tensor, Eq. (4.94). Remember that this expression is
strictly valid under the zero-torque condition at the disk inner radius. The exact
mechanism responsible for the dissipation of energy and angular is unknown, but to
proceed further we may attribute it to the action of an effective kinematic viscosity ν.
Then we can write TRφ = νΣR(∂ΩK/∂R), and so

νΣ = Ṁ

3π

(
1−

√
Rin

R

)
. (4.112)

We have five equations, (4.108) to (4.112), for seven unknowns ρ, Σ , H , as, P ,
vR, and ν, in terms of the parametersM , Ṁ , R, and Rin. They must be supplemented
with an equation of state, an equation for the energy balance, and a prescription for
the viscosity.

Following Shakura (1972) and Shakura and Sunyaev (1973) we adopt the α-
prescription for the viscosity,

ν = αasH. (4.113)

Recall that this is equivalent to choosing Eq. (4.88) for the stress tensor under the
think disk approximation.

We have often assumed that in a thin disk the angular velocity is Keplerian and
the radial velocity very small compared to the tangential velocity. Before proceed-
ing, let us now check it, at least in the α-prescription. From Eqs. (4.111) and (4.112)
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we have

vR =−3

2

ν

R

(
1−

√
Rin

R

)
. (4.114)

Replacing α from Eq. (4.89) and since H �R, we get ν/R ≈ αasH/R� αas. For
α � 1 the radial velocity is then highly subsonic and so very small compared to the
tangential velocity. Back to Eq. (4.85) for the radial momentum conservation, we
can now neglect the term vR∂vR/∂R. Thus

vφ ≈
(
GM

R

)1/2

, (4.115)

and we confirm that the tangential velocity is indeed approximately Keplerian.
The total pressure in the plasma is the sum of the gas pressure and the radiation

pressure

P = Pgas + Prad = ρkT

μmp
+ 4σSB

3c
T , (4.116)

where mp is the mass of the proton and μ the mean molecular weight. We have
neglected in Eq. (4.116) any contribution of the magnetic field to the pressure.

Finally, we have to discuss the radiative transport in the disk. Since the disk is
geometrically thin the radiation is transported from the interior to the surface mainly
in the vertical direction. We shall also assume that the disk is optically thick, so that
the radiative transport proceeds through diffusion. This means that the optical depth
in the z-direction must satisfy

τ =
∫ H

0
κρdz� 1, (4.117)

where κ is the opacity.
The appropriate equation for the energy flux in the z-direction in an optically

thick disk is

Q− =−16σSBT
3

3κρ

∂T

∂z
. (4.118)

We expect that the temperature is maximum at z= 0 and decreases towards the sur-
face, so that Tc ≡ T (z = 0)� T (z =H). Then we can approximate the derivative
as ∂T /∂z≈−Tc/H to obtain

Q− ≈ 16σSBT
4
c

3κρH
. (4.119)

In steady state all the energy dissipated by viscous forces per unit area must be
released as radiation, so that Q− =Q+. Therefore

16σSBT
4
c

3κρH
≈ 3GMṀ

8πR3

(
1−

√
Rin

R

)
. (4.120)
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This is the equation for the central temperature of the disk. To complete the system
we must provide an expression for the opacity

κ = κ(ρ,T ). (4.121)

The set of algebraic equations (4.108) to (4.112) plus (4.113), (4.116), (4.120),
and (4.121) may be solved to find Σ , H , ρ, as, P , vR, ν, Tc, and κ as a function of
M , Ṁ , α, R, and Rin.

The solution was found by Shakura and Sunyaev (1973) (see also Novikov and
Thorne 1973 for the relativistic version); its characteristics depend on which is the
main contribution to the pressure and which process dominates the opacity to the
escape of radiation. According to this, the disk can be divided into three regions:

1. an outer region (large R) in which gas pressure dominates over radiation pressure
and the opacity is due to free-free absorption,

2. a middle region (smaller R) in which gas pressure dominates over radiation pres-
sure but opacity is due to Thomson scattering off electrons, and

3. an inner region (smallR) in which radiation pressure dominates over gas pressure
and opacity is mainly due to scattering.

The transition from the outer to the middle region occurs where the opacity by free-
free absorption and electron scattering become comparable, κff ∼ κes. The transition
to the middle to the inner region occurs where Pgas ∼ Prad. Notice that the middle
and inner regions may not exist depending on the value of Ṁ .

As long as absorption dominates the opacity the spectrum of the disk can be ap-
proximated as a blackbody. In those regions where opacity is mainly due to electron
scattering the spectrum is modified with respect to that given in Eqs. (4.106) and
(4.107). As shown by Shakura and Sunyaev (1973) and Novikov and Thorne (1973)
the emissivity is of the form

Iν ∝ x3/2e−x/2

(e−x − 1)1/2
, (4.122)

where x = hν/kT . This is called a “modified” blackbody spectrum. The result is
that the region of the spectrum Fν ∝ ν1/3 (see Fig. 4.9) becomes approximately flat,
Fν ∝ ν0.

4.4.4 Accretion Disks in Strong Gravitational Fields

The general theory of accretion disks in a strong gravitational field was developed
by Page and Thorne (1974). They found the vertically and time-averaged structure
of a thin disk of negligible self-gravity in a space-time with a stationary, axially
symmetric, asymptotically flat metric.

Page and Thorne (1974) wrote the interval ds2 in a general manner as

ds2 =−e2νdt2 + e2ψ(dφ −ωdt)2 + e2μdr2 + dz2, (4.123)
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where t is the temporal coordinate and (r,φ, z) have the usual meaning. The func-
tions ν,ψ , ω, andμ depend only on r since the disk is, by assumption, geometrically
thin. Equation (4.123) is then valid only near the plane of the disk (that lies in the
equatorial plane of the black hole); otherwise corrections must be introduced to the
coefficients of the metric tensor to account for their dependence on z.

A further assumption of the model is that matter moves in circular geodesic or-
bits in the equatorial plane of the black hole. Then, the 4-velocity u of a parti-
cle is approximately equal to the 4-velocity of a geodesic orbit on the equatorial
plane, u(r)≈ w(r). This assumption implies that the gravitational attraction of the
black hole dominates over the pressure gradient; otherwise the paths would not be
geodesics. The specific energy at infinity, angular momentum, and angular velocity
of a particle in a circular geodesic orbit are

Ẽ =−wt(r), L̃=wφ(r), Ω =wφ/wt , (4.124)

respectively.
From the relativistic equations for the conservation of mass, energy, and momen-

tum, Page and Thorne (1974) derived the expressions for the time-averaged mass
accretion rate Ṁ and energy flux Q+(r) per unit proper time per unit area of the
disk. In terms of the coefficients of the metric and the surface mass density Σ(r)
these read

Ṁ =−2πeν+ψ+μΣur, (4.125)

Q+(r)=− Ṁ
4π
e−(ν+ψ+μ) Ω,r

(Ẽ −ΩL̃)2
∫ r

risco

(Ẽ −ΩL̃)L̃,rdr. (4.126)

Here risco is the radius of the innermost stable circular geodesic orbit, where the
zero-torque condition was applied to obtain Eq. (4.126). As in the model of Shakura
and Sunyaev (1973), the radiation is assumed to escape in the vertical direction only.

Once a specific form for the metric tensor is chosen, Ṁ andQ+ can be explicitly
calculated. The expressions for a Kerr black hole, for example, are given in Novikov
and Thorne (1973) and Page and Thorne (1974).

4.4.5 Self-gravitating Accretion Disks

The study of self-gravitating disks is traditionally associated to the problem of for-
mation of galactic spiral arms (e.g. Goldreich and Lynden-Bell 1965) and planets
(e.g. Boss 1998). Self-gravity is also expected to be relevant in the outer regions of
accretion disks in AGN (e.g. Shlosman and Begelman 1989; Goodman 2003) and
some types of young stellar objects (e.g. Lodato and Bertin 2003b). We discuss next
some relevant results of the theory and simulations on self-gravitating disks; for fur-
ther reading we refer the reader to the book by Binney and Tremaine (1987) and the
comprehensive review by Karas et al. (2004).
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Choosing a criterion to quantify the importance of the self-gravity of an accretion
disk is not absolutely straightforward. An obvious first choice is to compare the mass
of the compact object M and the mass of the disk

Md(R)= 4π
∫ R

0
Σ
(
R′
)
R′dR′. (4.127)

We expect that the effects of self-gravity become relevant when Md exceeds some
arbitrary fraction of M . A more reliable criterion is to compare the values of the
gravitational potentials generated by the central object and the disk, that we shall
denote by ΦBH and Φd, respectively. Self-gravity in some spatial direction i is im-
portant in those regions where |∇iΦd| � |∇iΦBH|. Notice that the gravitational ac-
celeration on an element of fluid is g=−∇Φ .

A third way of assessing the relevance of self-gravity is by analyzing the stabil-
ity of the disk against perturbations. Useful in this respect is Toomre’s parameter
(Toomre 1964)

Q≡ asκ

πGΣ
, (4.128)

where

κ2 = 2Ω

R

d

dR

(
R2Ω

)
(4.129)

is the epicyclic frequency. This is the frequency of oscillation of an element of fluid
subject to a radial displacement from its equilibrium orbit. For Keplerian rotation in
particular, κ =ΩK. An infinite thin disk with negligible viscosity becomes locally
unstable under axisymmetric perturbations for Q� 1.9 The disk becomes globally
unstable against non-axisymmetric perturbations for larger values of Toomre’s pa-
rameter, approximately in the range 1 �Q� 2.

We have seen that the half-thickness of a thin disk is H ∼ as/ΩK. If we further
approximate Md ∼ πR2Σ , then

Q∼
(
MBH

Md

)(
H

R

)
. (4.130)

This simple analysis reveals that the stability not only depends on the mass ratio
(massive disks and/or systems with low-mass central objects are more unstable) but
on the geometry of the disk through H/R—the outer boundaries of a thin disk are
more prone to become unstable.

If the conditions for the onset of instability are satisfied, self-gravity clearly can-
not be neglected. It has been argued that self-gravitating disks “auto-regulate” to
a marginally stable steady state with Q = constant (e.g. Bertin and Lodato 1999;
Gammie 2001). The auto-regulation mechanism works essentially in this way: if

9The same criterion applies to the global stability of the disk under axisymmetric perturbations
with kR� 1, where k is the wavenumber of the perturbation.
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the flow cools too effectively so that H/R� 1, the disk grows unstable—to regain
stability, the flow becomes turbulent and heats. Turbulence driven by gravitational
instabilities may be dominant in cold and dense regions of the disk where the gas
is not highly ionized, so that the development of the magnetorotational instability is
suppressed.

The perturbations in the density and the velocity field of the flow induced by
gravitational instabilities contribute to the transport of angular momentum out-
wards, thus enhancing accretion. Furthermore, the force of self-gravity also gener-
ates torques that redistribute angular momentum. Both effects may be incorporated
preserving the form of Eq. (4.86) through an appropriate expression for the compo-
nent of the stress tensor,

TRφ =ΣδvRδvφ +
∫
gRgφ

4πG
dz. (4.131)

The first term (usually called “Reynolds stress”) represents the contribution of grav-
itational instabilities; δv is the fluctuation of the velocity field. The second term ac-
counts for the torques exerted by the disk’s self-gravitational force; it was deduced
by Lynden-Bell and Kalnajs (1972). Once an expression for TRφ is given, it is pos-
sible to associate it with an effective viscosity applying the α-prescription. This is
the approach followed by Lin and Pringle (1987) and many others. Notice, never-
theless, that alternative parameterizations for the viscosity have been proposed, see
for instance Duschl et al. (2000).

A fundamental property of self-gravitating disks is that their angular veloc-
ity profile differs from Keplerian. Consider the radial component of the momen-
tum equation, Eq. (4.85). In steady state and neglecting the radial velocity, we get
Ω2R ∼ ∇RΦBH + ∇RΦd so, in general, we expect that Ω �=ΩK. This provides a
way of testing the influence of self-gravity in accretion disks. Indeed, sub-Keplerian
rotation velocities were measured in the nucleus of the active galaxies NGC 1068
(Greenhill and Gwinn 1997) and IC 1481 (Mamyoda et al. 2009). The observations
can be successfully explained when the gravity of the disk is considered, see for
example the models by Lodato and Bertin (2003a) and Huré et al. (2011).

The gravitational potential of the disk satisfies Poisson’s equation

∇2Φd(r)= 4πGρ(r), (4.132)

where ρ(r) is the mass density at a point r. Its general solution in terms of Green’s
function is

Φd(r)=−G
∫
Vd

ρ(r′)
|r− r′|dr′, (4.133)

where the integration is carried out over the volume Vd occupied by the disk. The
acceleration gd = −∇Φd due to the gravitational pull of the disk can be formally
calculated differentiating Eq. (4.133),

gd(r)=−G
∫
Vd

ρ(r′)(r− r′)
|r− r′|3 dr′. (4.134)
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Adding Eqs. (4.132) or (4.133) to those for the conservation of mass, energy,
and momentum, yields a coupled system that must be solved to calculate self-
consistently the structure of the disk. This is, however, no easy task.

Exact analytical solutions of Poisson’s equation are known for a limited number
of prescribed mass density profiles. Solutions obtained in this way are usually called
“potential-density pairs” (e.g. Evans and de Zeeuw 1992; Huré et al. 2007, Schulz
2009, 2012; see also references in Trova et al. 2012). Paczyński (1978a, 1978b)
solved a simplified version of the equations for the vertical structure of the disk. In
Paczyński’s model, matter is assumed to be distributed on an infinite slab of con-
stant half-thickness H about the plane z = 0, axially symmetric and homogeneous
in the radial direction. In this configuration the z−component of the gravitational
acceleration exerted by the disk is

gd
z = 2πGΣd

z , (4.135)

where

Σd
z = 2

∫ z

0
ρ
(
R,z′

)
dz′. (4.136)

The condition of hydrostatic equilibrium in the z-direction then reads

dP

dz
=−ρ

[
GMBHz

(R2 + z2)3/2
+ 2πGΣd

z

]
. (4.137)

Two more equations complete the system, one for the surface density and a poly-
tropic equation of state,

dΣd
z

dz
= 2ρ, (4.138)

P =Kρ1+1/n, (4.139)

with constant K and n. Solutions for different values of n are given in Paczyński
(1978a).

Paczyński’s model is a good approximation as long as the disk can be considered
homogeneous in the radial direction, i.e. as long as the radial derivatives in Poisson’s
equation can be neglected compared to the derivatives in the vertical direction

1

R

∂

∂R

(
R
∂Φd

∂R

)
� ∂2Φd

∂z2
. (4.140)

The drawback of the model is that, since it says nothing about the radial structure of
the flow, the condition in Eq. (4.140) cannot actually be checked.

Several methods and their numerical implementations have been developed to
solve Eq. (4.133); these include the series expansion of 1/|r− r′| in different basis
(e.g. Müller and Steinmetz 1995; Cohl and Tohline 1999; Chan et al. 2006; Trova
et al. 2012), Fast Fourier Transform (e.g. Binney and Tremaine 1987), and others
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(e.g. Huré 2004; Huré and Pierens 2005). This approach poses some difficulties,
mainly the singularity of the integrand at r′ → r (although there exist some tricks
to avoid it, see e.g. Huré and Pierens 2005; Huré and Dieckmann 2012). Aside this
issue, solving Eq. (4.133) is numerically very accurate although computationally
expensive. The calculation of the potential of the disk from Poisson’s differential
equation (e.g. Bodo and Curir 1992; Störzer 1993) is computationally less time-
consuming.

Nowadays the problem of calculating the structure of self-gravitating disk is di-
rectly tackled using numerical simulations. The results indicate that the structure of
the disk emerges from an interplay between the effects of cooling and self-gravity.

Performing two-dimensional simulations, Gammie (2001) found that if the cool-
ing timescale of the flow is tcool = βΩ−1 with β � 3, gravitational instabilities lead
to fragmentation and collapse of parts of the disk. In the opposite limit, if the typical
cooling time of the gas is tcool � 3Ω−1, the disks settles to a state characterized by
fluctuations in the surface mass density but stable against fragmentation. Recent 3D
SPH simulations by Rice et al. (2012) appear to corroborate this result, although for
slightly larger values of the critical β . Figure 4.10 shows the surface density pro-
files for different values of β in simulations with 5×105 particles. Fragmentation is
observed for β � 6−7; notice in all cases the global spiral structure of the disk. De-
pending on the context, bound objects formed by this mechanism may be the seeds
of planets, brown dwarfs, and stars.

4.5 Advection-Dominated Accretion Flows

The geometrically thin, optically thick accretion disk model allows several gener-
alizations. In particular, the assumption that all the heat generated by viscosity is
radiated away does not hold for all accretion rates. As we shall see, under some
conditions the radial velocity of the accretion flow becomes large and the heat can-
not be transformed into radiation and emitted fast enough. A significant fraction of
the heat is stored as kinetic energy in the flow and advected onto the accretor. At the
same time the disk “inflates”, so that the thin disk assumption breaks down.

The existence of another accretion regime different from a thin disk is required to
account for the observational spectrum of X-ray binaries. In some of these systems
the emission extends into the hard X-rays (�100 MeV), well beyond the frequen-
cies predicted by any physically reasonable thin disk model. Besides, the spectral
shape of the hard X-ray component is not that of a blackbody but a power-law,
what hints to a non-thermal radiative mechanism. The idea of a geometrically thick,
hot “corona” with electron temperature Te ∼ 109–1010 K was first suggested by
Bisnovatyi-Kogan and Blinnikov (1976, 1977) to explain the variability and the X-
ray spectrum of the black hole X-ray binary Cygnus X-1. These authors argued that
the Compton up-scattering of photons from the disk off the electrons in the corona
would produce a power-law spectrum like the observed.

A second piece of evidence suggesting the existence of radiatively inefficient
accretion regimes comes from the observation of low-luminosity galactic nuclei.
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Fig. 4.10 Surface density profile of a self-gravitating disk with a characteristic cooling time
tcool = βΩ−1. Top left: β = 4. Top right: β = 5. Bottom left: β = 6. Bottom left: β = 7. From
Rice et al. (2012). Reproduced by permission of Oxford University Press on behalf of the Royal
Astronomical Society

These include the compact source at the Galactic Center, Sgr A∗, that hosts a black
hole of ∼4 × 106M�. The value of the accretion rate in Sgr A∗ is estimated to
be about 10−4–10−3M� yr−1. The luminosity predicted by the thin disk model
for such M and Ṁ is larger than 1040 erg s−1, whereas the observed luminosity
of Sgr A∗ is only about ∼1037 erg s−1. Furthermore, the shape of the spectrum
(approximately flat from radio to X-rays) is not consistent with that of an optically
thick, geometrically thin disk.

Besides that of Shakura and Sunyaev (1973), we can name other solutions to the
problem of accretion onto a mass M including the effect of viscosity and rotation.
One is the introduced by Shapiro et al. (1976). They developed a model where the
only source of pressure is the gas but allowed the temperature of ions and electrons
to be different, thus

P = ρk

mp
(Te + Ti). (4.141)
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It is assumed that the mechanism of viscous dissipation preferably heats the ions,
that ions and electrons are only weakly coupled (they do not thermalize on relevant
timescales), and that electrons cool much more efficiently. Under these conditions
the temperature of ions naturally turns out to be much higher than that of electrons,
Ti ≈ 1011 K� Te ≈ 108−9 K. Notice that due to the large value of Ti the flow is
not strictly geometrically thin but has a height scale H/R ∼ 0.2. The remaining two
suppositions of the model are that the plasma is optically thin to absorption and
its main radiative cooling process is inverse Compton scattering off electrons. The
emerging spectrum is a power-law in the energy range of the X-rays and soft gamma
rays. Shapiro et al. (1976) suggested that a two-temperature accretion flow like this
might exist in the inner region of a standard thin disk. The solution, however, is
thermally unstable (e.g. Pringle 1976) and therefore unlikely to describe any real
astrophysical flow.

In the models of Shakura and Sunyaev (1973) and Shapiro et al. (1976) all the
energy dissipated by viscosity is radiated. It is possible to construct other solutions
with a different energy balance, in particular allowing for a fraction of the dissipated
energy to remain in the plasma and be advected. These types of flows are called
advection-dominated accretion flows (ADAFs).

There are two types of advection-dominated accretion flows. Optically thick
ADAFs develop at very high accretion rates, typically larger than the Eddington
value. In this limit the radiation gets trapped in the accretion flow and advected be-
cause the optical depth is very large. The properties of these ADAFs have been stud-
ied, for example, by Begelman (1978), Begelman and Meier (1982), and Abramow-
icz et al. (1988). Optically thin ADAFs occur in the opposite limit of sufficiently
low accretion rates. In this regime the cooling timescale of the flow is longer than
the accretion timescale, resulting again in a significant fraction of the energy being
advected. The theory of optically thin ADAFs was pioneered by Ichimaru (1977),
and later developed in detail by Narayan and Yi (1994, 1995a, 1995b), Abramowicz
et al. (1995), Chen (1995), and Chen et al. (1995). It has received much attention
because of its success in explaining the radiative properties of black hole binaries in
certain spectral states and those of low-luminosity active galactic nuclei. We shall
focus our discussion on ADAFs in the optically thin regime, with emphasis on two-
temperature models.

4.5.1 The Equations of an ADAF

The equations that describe an ADAF are the usual hydrodynamic equations
for a viscous accretion flow. It is convenient now to work in spherical coordi-
nates (r, θ,φ). We shall assume that the system has azimuthal symmetry, so that
∂/∂φ = 0, and has reached the steady state.

The continuity equation then reads

1

r2

∂

∂r

(
r2ρvr

)+ 1

r sin θ

∂

∂θ
(sin θρvθ )= 0, (4.142)
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where, as usual, ρ is the mass density, and vr and vθ are the radial and polar com-
ponents of the velocity of the flow, respectively.

As we shall show below there is a possible solution with vθ = 0. In that case, the
three components of the momentum conservation equation become

ρ

(
vr
∂vr

∂r
− v

2
φ

r

)
=−GMρ

r2
− ∂P
∂r
+ ∂

∂r

[
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∂vr

∂r
− 2

3
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r
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)]
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r

∂
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r
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+ νρ
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+ ∂
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ρ
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= ∂

∂r

[
νρr

∂

∂r

(
vφ

r

)]
+ 1

r

∂

∂θ

[
νρ sin θ

r

∂

∂θ

(
vφ

sin θ

)]

+ νρ
r

[
3r
∂

∂r

(
vφ

r

)
+ 2 cot θ sin θ

r

∂

∂θ

(
vφ

sin θ

)]
. (4.145)

In writing Eqs. (4.143) to (4.145) we have neglected the self-gravity of the fluid,
and we have used the standard form of the stress tensor for a viscous flow given in
Eq. (4.5).

These four equations must be complemented with one for the energy balance.
Since the form of this equation is the fundamental difference between an ADAF and
a thin disk, we shall develop it in certain detail. Let T be the temperature and s the
entropy per unit mass per unit volume of the gas; then

Tρ
ds

dt
= Tρ

[
∂s

∂t
+ (v ·∇)s

]
= q+ − q−. (4.146)

Here q+ is the rate of heating due to viscosity per unit volume per unit mass and
q− the rate of energy loss due to radiation per unit volume per unit mass. In a thin
disk q+ = q−, but this is generalized in an ADAF to account for advection. It is
convenient to write

q− = (1− f )q+, (4.147)

so that

Tρ
ds

dt
= f q+. (4.148)
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The parameter f measures the degree up to which the flow is advection-dominated
since, by definition,

f = q
+ − q−
q+

≡ qadv

q+
. (4.149)

The regime f � 1 corresponds to q+ ≈ q− � qadv; this describes standard thin
disks and the two-temperature disks of Shapiro et al. (1976). The case |f | � 1
occurs when −qadv ∼ q− � q+. These are flows where the viscous dissipation is
negligible and all the entropy of the gas is converted into radiation; an example
is Bondi accretion. Finally, the case f ≈ 1 where qadv ≈ q+ � q− describes an
ADAF—cooling is inefficient and most of the heat is advected with the matter.

It is useful to write Eq. (4.146) in terms of the energy ε per unit volume of the
gas. According to the first law of thermodynamics

dε = T ds − PdV, (4.150)

where V = 1/ρ is the specific volume. Then

ρ
dε

dt
− P
ρ

dρ

dt
= f q+. (4.151)

In steady state and using Eq. (4.11) for q+, the energy equation finally reads
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The set of Eqs. (4.142), (4.145), and (4.152) admits a self-similar solution as
shown by Narayan and Yi (1995a). The velocity, the speed of sound, and the mass
density are given by

vr = vff(r)v(θ), (4.153)

vθ = 0, (4.154)

vφ = rΩK(r)Ω(θ), (4.155)

as =
√
P/ρ = rΩK(r)as(θ), (4.156)

ρ = r−3/2ρ(θ), (4.157)

where vff is the free-fall velocity

vff =
(
GM

r

)1/2

. (4.158)
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The dimensionless functions v(θ), Ω(θ), as(θ), and ρ(θ) fix the angular depen-
dence of the variables. Notice that the expression for the mass density follows from
vr and the constancy of the accretion rate

Ṁ =−2π
∫ 0

π

ρr2vr sin(θ)dθ. (4.159)

Using that vr ∝ r−1/2 immediately yields ρ ∝ r−3/2. Then r2vrρ is independent of
r and from Eq. (4.142) one concludes that vθ = 0 is, indeed, a possible solution.

Inserting Eqs. (4.153) to (4.157) in (4.145) and (4.152) (the continuity equation is
automatically satisfied) we get a system of coupled algebraic equations in the vari-
able θ for the functions v(θ),Ω(θ), as(θ), and ρ(θ). To solve it, we need to provide
an expression for the viscosity. Narayan and Yi (1995a) adopted the α-prescription

ν = αa
2
s

ΩK
(4.160)

with α a constant.
With this expression for the viscosity, the set of equations to be solved is
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Here we introduced the parameter

ε′ ≡ ε

f
= 1

f

(
5/3− γ
γ − 1

)
, (4.162)

where γ is the ratio of the specific heats of the gas. To completely determine the
solution boundary conditions must be chosen. One is the value of Ṁ ; the rest are
imposed at θ = 0 and θ = π/2. At θ = π/2 we demand reflection symmetry with
respect to the equatorial plane, then

dv

dθ
= dΩ
dθ

= das

dθ
= dρ
dθ
= 0. (4.163)

At the axis θ = 0 we demand that the solutions are smooth and non-singular, so

dv

dθ
= dΩ
dθ

= das

dθ
= dρ
dθ
= 0, v(θ = 0)= 0. (4.164)
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Fig. 4.11 Angular velocity Ω , radial velocity v, mass density ρ, and speed of sound cs at fixed
radius as a function of the polar angle θ , for α = 0.1 and several values of the parameter ε′. From
Narayan et al. (1998b)

The condition v(θ = 0) = 0 follows directly from the third of Eqs. (4.161).10 Not
all these boundary conditions are independent, but only a subset of them must be
chosen.

Figure 4.11 shows the solutions of Eqs. (4.161) as a function of the polar angle
for different values of ε′ = 1, 0.1, 10. At fixed γ , decreasing ε′ implies increasing
f , so that a smaller value of ε′ correspond to a more advection-dominated flow.

For ε′ = 0.1, 1 the angular velocity is almost independent of θ . It follows from
Eqs. (4.153) and (4.155) that the tangential velocity is sub-Keplerian whereas the
radial velocity is not at all negligible—for ε′ � 1 we have vr ∼ 0.1vff at the equa-
tor. Furthermore, ρ(θ) is almost constant. These three properties of the flow totally
distinguish it from a thin disk. For ε′ = 10, however, Ω(θ)∼ 1 so that vφ ∼ rΩK,
and the mass density sharply peaks at the equator. These are exactly two expected
characteristics of a thin disk. In any case the radial velocity is maximum (in absolute
value) at θ = π/2, so most of the accretion proceeds along the equatorial plane.

10There is another possible solution with v(θ = 0)=−ε′/2α. This is a generalization of the spher-
ically symmetric Bondi accretion to viscous flows.
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In general, we can summarize the characteristics of an ADAF as follows:

1. the radial velocity is a considerable fraction of the free-fall velocity so accretion
is fast,

2. the rotation velocity is sub-Keplerian,
3. the gas is expected to be hot since it has no time to cool before being accreted,
4. the typical height scale is H ∼ as/ΩK ∼ r—the flow is then quasi-spherical.

The self-similar solution of the ADAF equations is expected to provide a good
description of the flow far from the boundaries. A complete global solution must sat-
isfy some boundary condition for the flow of angular momentum onto the accretor
at the inner radius Rin (just as in thin disk models), and an outer boundary condi-
tion that may be, for example, that the ADAF matches a thin disk at some radius
Rtr. Extra conditions must be imposed, as well, to ensure a smooth transition of the
physical variables across the radius Rs where the flow becomes supersonic. Global
ADAF solutions were calculated, for example, by Chen et al. (1997) and Narayan
et al. (1997a); see also Yuan et al. (2008) for a simplified treatment of the problem.
They found that the self-similar solution is accurate far from the boundaries and the
sonic radius.

4.5.1.1 Height-Averaged Solution

One way to simplify the full set of hydrodynamic equations of the previous section
is to average them over z, just as it is done in thin disk models. You can see Narayan
and Yi (1994) for the complete expressions of the height-averaged equations; here
we only quote the results for reference. As a function of the cylindrical radius R
they read
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where

g
(
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(5+ 2ε′)2

]1/2

− 1. (4.166)

The approximations are valid in the limit α2 � 1. The height-averaged mass density
follows from the radial velocity and the accretion rate

Ṁ =−4πρRHvR. (4.167)
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Narayan and Yi (1995a) showed that the solutions of the exact equations of
Sect. 4.5.1, when averaged over θ , differ no more than ∼20 % from those of the
height-averaged equations. These suggests that the height-integrated equations must
be interpreted not as averages over z, but as averages over θ at fixed r . Notice, how-
ever, that the accuracy of the approximation has been proofed specifically for the
self-similar solution and it is not a general result.

4.5.2 Two-Temperature ADAFs

Two-temperature ADAF-like flows were described for the first time by Ichimaru
(1977), and later extensively studied by Narayan and Yi (1994, 1995a, 1995b),
Abramowicz et al. (1995), Chen (1995), and Chen et al. (1995) among others.

Two-temperature optically thin ADAF models are based on a series of assump-
tions on the thermodynamics of the gas, the coupling between ions and electrons,
and the mechanisms of cooling. We can summarize them as follows.

First, the total pressure P = ρa2
s is considered as the sum of the pressure of a

two-temperature gas and the magnetic pressure

P = Pgas + Pmag = ρk

mp

(
Te

μe
+ Ti

μi

)
+ B

2

8π
. (4.168)

Here μi,e are the mean molecular weights of ions an electrons. Notice that radiation
pressure has been neglected. This is justified since in the optically thin ADAF model
we seek to construct the flow is radiatively inefficiently. This is not true in ADAFs
at high accretion rates. The magnetic and the gas pressure are assumed to be related
to the total pressure as

Pmag = (1− β)P, Pgas = βP, (4.169)

with β a constant. Typical ADAF models fix β ∼ 0.5.
The second fundamental hypothesis is that the heat generated by viscosity is

preferably transferred to ions. Only a small fraction δ � 1 heats the electrons; a
value of the order of δ ∼me/mp ∼ 10−3 is usually adopted. This naturally results in
Ti � Te . Notice that depending on the mechanism of energy dissipation this hypoth-
esis might not be true at all. Since, however, electrons cool much more efficiently
than ions we still can expect that Ti > Te even if δ ∼ 1.

It is further supposed that the only process of coupling between ions and electrons
is Coulomb scattering. The rate of energy transfer per unit volume from ions to
electrons qie(Ti, Te) is given, for example, in Stepney and Guilbert (1983).

Assuming that electrons cool completely, so that q−e = qie, we can now write the
equation for the energy balance in an ADAF. In steady state all the energy deposited
in the ions must be transferred to electrons or advected so, for δ = 0,

q+ = qadv + qie = f q+ + qie. (4.170)
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At the same time, all the energy transferred from ions to electrons is radiated, and
since electron cooling is the only source of radiation we have that

qie = q−e = q−. (4.171)

The main difference between a two-temperature ADAF an other accretion regimes
lies in the last two equations.

For fixedM , Ṁ , α, β , and r , Eqs. (4.169) to (4.171) may be solved to find Ti , Te ,
and f . The rest of the parameters (ρ, as, v, etc.) involved in the expressions for q−,
q−e , qie, etc., are obtained from the equations in Sect. 4.5.1, or from their averaged
solutions, Eqs. (4.165) and (4.167).

The temperature of ions behaves roughly as Ti ≈ 1012βr̃−1 K, where r̃ is the
radius in units of the Schwarzschild radius of the accretor. The electron temperature
also increases inwards for large radius, but then saturates to Te ≈ 109–1010 K in the
region r̃ � 102–103.

An interesting result is that, at fixed r and Ṁ , one or more solutions exist depend-
ing on the value of f (Narayan and Yi 1995b). For Ṁ ≤ Ṁcrit there is one solution
with f ≈ 1; this describes an advection-dominated flow. There is a second solution
with f � 1 that exists only for Ṁ ≥ Ṁ ′

crit; this is a cooling-dominated flow, i.e.
a thin disk. For Ṁ ′

crit ≤ Ṁ ≤ Ṁcrit both solutions are possible. Furthermore, there
exists a third branch for intermediate values of f < 1. This solution is unstable
and corresponds to the two-temperature disk model of Shapiro et al. (1976). For
accretion rates Ṁ > Ṁcrit only the thin disk solution remains, and only the ADAF
solutions exists for Ṁ < Ṁ ′

crit.
The maximum accretion rate Ṁcrit for an ADAF may be estimated as the value

of Ṁ above which the energy dissipated by viscous forces can be balanced only by
radiative losses without the need of advection. A detailed calculation of Ṁcrit was
performed by Narayan and Yi (1995b). Defining ṁ = Ṁ/ṀEdd,11 they found that
ṁcrit ∼ 0.3α2 for r̃ � 103, whereas ṁcrit ∼ 0.3α2(r̃/103)−1/2 for r̃ � 103.

4.5.3 The Radiative Spectrum of an ADAF and Its Applications

The radiative spectrum of an ADAF results from the action of different cooling
processes as seen in Fig. 4.12. For electrons the most relevant mechanisms are syn-
chrotron radiation, Bremsstrahlung, and inverse Compton scattering. The total cool-
ing rate of electrons is given by the added contribution of all these processes

q−e = q−Br + q−synchr + q−IC. (4.172)

11Narayan and Yi (1995b) adopted a value of the Eddington accretion rate of ṀEdd =
LEdd/0.1c2 ≈ 1.39× 1018M/M� g s−1.
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Fig. 4.12 A generic radiative spectrum from an optically thin advection-dominated accretion flow.
Sy, IC, Br, and pp mark the regions of the spectrum dominated by synchrotron, inverse Compton,
Bremsstrahlung, and decay of neutral pions created in proton-proton collisions, respectively. The
solid line corresponds to a model with low Ṁ , the dashed line to an intermediate Ṁ , and the dotted
line to a model with a high accretion rate near the critical value above which the ADAF solution
does not exist. Adapted from Narayan et al. (1998b)

The target photons for inverse Compton scattering are the Bremsstrahlung and syn-
chrotron radiation fields, plus some possible external source of radiation (the radia-
tion of the donor star in a binary, for example). Then

q−IC = q−IC,Br + q−IC, synchr + q−IC,ext. (4.173)

As first pointed out by Mahadevan et al. (1977), ions may also contribute to
the radiative spectrum of the accretion flow mainly through inelastic collisions of
two protons. This process creates neutral pions that decay into two gamma-rays,
π0 → γ + γ . If the protons are thermal the gamma-ray spectrum is basically a peak
at Eγ ∼ mπ0c2/2 ∼ 70 MeV. If, on the other hand, protons are non-thermal, the
shape of the gamma-ray spectrum depends on the details of the proton distribu-
tion. A power-law energy distribution of protons, for example, yields a power-law
gamma-ray spectrum. We shall discuss non-thermal radiative processes in more de-
tail in Sect. 5.9.

Accretion flows around supermassive black holes, specially in low-luminosity
galactic nuclei, have been successfully modeled as ADAFs; see Yuang (2007) for
a review. Specific applications include a variety of systems such as Sgr A∗ in the
Galactic Center (e.g. Narayan et al. 1995, 1998a, 1998b; Yuan et al. 2002, 2003,
2004), nuclei of giant elliptical galaxies such as M87 (e.g. Fabian and Rees 1995;
Reynolds et al. 1996; di Matteo and Fabian 1997), Fanaroff-Riley type I galaxies
(e.g. Reynolds et al. 1996; Wu et al. 2007), and low-ionization nuclear emission-
line galaxies (e.g. Lasota et al. 1996; Quataert et al. 1999).

Thin disk+ADAF models have been applied to explain the radiative spectrum of
soft X-ray transients in quiescence. These are binary systems formed by an accreting
black hole and a low-mass donor star, that after spending long periods in a very low
luminosity state (quiescence) suddenly enter in outburst. Classical works in this field
are those of Narayan et al. (1996, 1997b) for the sources A06200-00 and V404 Cyg.
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Fig. 4.13 Geometry of the
accretion flow around an
accreting stellar-mass black
hole in different spectral
states as a function of the
accretion rate in Eddington
units, ṁ= Ṁ/ṀEdd. From
Esin et al. (1997).
Reproduced by permission of
the AAS

ADAF models have been applied as well to reproduce the spectrum of black hole
X-ray binaries. These sources go through a series of states characterized by different
temporal and spectral properties of the X-ray spectrum. The two main spectral states
are the so-called high-soft and low-hard states. Very roughly, the spectrum in the
high-soft state is dominated by a thermal component that peaks in the soft X-rays,
and in the low-hard state by a non-thermal power-law spectrum that extends up to
the hard X-rays/soft gamma rays.

The transition between states is attributed to the change in the accretion regime
from an ADAF to a thin disk due to the variation of the accretion rate (e.g. Narayan
1996; Esin et al. 1997, 1998, 2001). The cycle is sketched in Fig. 4.13. For low
accretion rates the system is in quiescence/low-hard state. The surroundings of the
compact object are filled by a quasi-spherical “corona” of hot gas with the proper-
ties of an ADAF. There exists a thin accretion disk quite detached from the com-
pact object; the transition radius between the corona and the disk depends on Ṁ .
During this phase the emission is dominated by the radiation from the corona, that
is a power-law spectrum mainly due to Compton scattering. As the accretion rate
increases the source goes through intermediate states of mixed characteristics. Fi-
nally, Ṁ exceeds the critical value above which the ADAF solution cannot exist.
The corona disappears and the inner radius of the disk approaches the compact ob-
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Fig. 4.14 Non-thermal
contributions to the radiative
spectrum in a corona model
with a relativistic
proton-to-electron power
ratio of 100. From Romero
et al. (2010), reproduced with
permission ©ESO

ject. The source enters the high-soft state, when the spectrum is dominated by the
blackbody emission from the disk.

Related to self-consistent ADAF + thin disk models are the “disk+corona”
models (see Poutanen 1998 for a review). In these models the corona is simply
added as a separate component of the accretion flow besides the accretion disk.
Some geometry for the corona is chosen—it may be a quasi-spherical cloud that
partially overlaps with the disk or some other configuration. The characteristics
of the corona (the electron temperature Te and the optical depth τ ) and its radia-
tive spectrum must be found solving the coupled kinetic equations for particles
and radiation. Several effects add complexity to the model. For example, if Te is
large, the high-energy tail of the electron distribution is expected to deviate from
a Maxwellian; this population of non-thermal particles can produce significant ra-
diation above mec2 ∼ 500 keV. Furthermore, if a population of non-thermal very
energetic protons develops, the corona might be a site of significant gamma-ray
emission. Recently, Romero et al. (2010) and Vieyro and Romero (2012) have con-
sidered the effect of non-thermal particle populations (electrons and protons) in the
corona around a stellar-mass black hole. In such a case relativistic protons cool by
synchrotron, photo-pair, photo-meson, and inelastic proton-proton interactions. The
full non-thermal spectrum can be quite complicated. A generic spectral energy dis-
tribution obtained with such model is shown in Fig. 4.14. Figure 4.15 shows an
application to the famous source Cygnus X-1 in low-hard state. Notice that the soft
tail observed in the spectrum above 1 MeV is explained as non-thermal radiation
from the corona. The results of some models predict that the emission from the
corona might be also detectable at very high-energies. The absorption gap between
Eγ ∼ 100 MeV and Eγ ∼ 100 GeV arises by creation of electron-positron pairs via
two-photon annihilation.
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Fig. 4.15 Non-thermal contributions to the radiative spectrum in a corona model for Cygnus X-1.
Cases are considered with different relativistic proton-to-electron power in the corona, given by
the parameter “a”. The curved labeled “corona” is the characteristic Comptonization power-law
spectrum of the corona. The sensitivity curves of the gamma-ray satellite Fermi and the Cherenkov
telescopes MAGIC and CTA (to operate in coming years) are shown. Figure from Romero et al.
(2010), reproduced with permission ©ESO; observational data from McConnell et al. (2000)

4.5.4 Other Radiatively Inefficient Accretion Regimes

Several radiatively inefficient accretion flows (RIAFs) different from ADAFs have
been introduced over the years. One of such models is the advection-dominated in-
flow outflow solution (ADIOS) developed by Blandford and Begelman (1999, 2004);
see also Begelman (2012) for a recent reformulation. The key characteristic of an
ADIOS is that it allows the removal of matter in the form of a wind at all radii, that
carries away energy and angular momentum. The idea is based on the observation
that in an ADAF the Bernoulli constant of the gas is positive,

Be= 1

2
v2 − GM

r
+ 5

2
a2

s > 0. (4.174)

This means that if the flow somehow reverted its direction of motion it could escape
to infinity with positive energy. Narayan and Yi (1995a) already suggested that this
feature of ADAFs make them prone to launch outflows.

The basic hydrodynamic equations of an ADIOS are the same than those of an
ADAF, but the accretion rate is not a constant. Blandford and Begelman (1999)
parameterized it as

Ṁ ∝ rp (4.175)

with 0 ≤ p < 1. This gives a mass density profile on the equator that scales as
ρ ∝ r−3/2+p . The ADAF solution is recovered when p = 0. In order to yield Be> 0,
Blandford and Begelman (1999) showed that p ≈ 0.5–1.
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A second feature of ADAFs, already pointed out by Narayan and Yi (1994), is
that they are convectively unstable for low values of the parameter α. Convection
may substantially modify the structure of the flow since it provides a mechanism to
transport angular momentum inwards, as opposite to the outwards transport associ-
ated to viscosity. Convection-dominated accretion flows (CDAFs) have been exten-
sively studied analytically (e.g. Narayan et al. 2000; Quataert and Gruzinov 2000;
Abramowicz et al. 2002; Igumenshchev 2002; Narayan et al. 2002) and numerically
(e.g. Stone et al. 1999, Igumenshchev and Abramowicz 1999, 2000, Igumenshchev
et al. 2000). For values of α � 0.1, the characteristics of a CDAF significantly differ
from those of an ADAF. First, the mass density scales as ρ ∝ r−1/2, whereas in a
pure ADAF ρ ∝ r−3/2. And second, in CDAFs solutions the accretion rate is much
smaller than in an ADAF. In fact, a CDAF resembles a static envelope more than an
accretion flow.

We have up to now only spoken superficially of the role of the magnetic field
in the accretion flow. The magnetic field is, however, an essential component in
any theory of accretion. We have already mentioned that the magnetorotational in-
stability is likely the mechanism responsible for the angular momentum distribu-
tion in an accretion disk. We shall see in the next chapter that the magnetic field
also plays a fundamental role in the launching and collimation of outflows. There
are a large number of works in the literature that study RIAFs including magnetic
fields; you can see Bisnovatyi-Kogan and Lovelace (2001) for a review on this
topic.

Meier (2005; see also Fragile and Meier 2009) introduced the idea of magnetic-
ally-dominated accretion flows (MDAFs), flows where the magnetic forces domi-
nate over thermal and radiation forces. According to these works, MDAFs could
develop in the inner region (r � 100Rgrav) of an ADAF. The suggested mechanism
for the formation of a MDAF is the radiative cooling of both electrons and ions in a
plasma with Te ≈ Ti . If the plasma cools the thermal pressure and the height scale of
the flow decrease, with the consequent increase of the magnetic-to-thermal pressure
ratio. This stabilizes the flow against the development of magnetic turbulence, so
that an ordered magnetosphere can develop.

In the model of Meier (2005) the magnetosphere inside the transition radius is
formed by closed field lines that connect to the black hole. In this region the flow is
non-turbulent and almost radial along the field lines. In the ADAF/MDAF transition
region, however, there are magnetic field lines that connect the transition region with
infinity. This configuration is, in principle, appropriate for the launching of jets.

Finally, let us briefly comment on the dissipationless disk model developed by
Bogovalov and Kelner (2005, 2010). The model is based on the idea that energy and
angular momentum are removed from the accretion flow by a wind. In this sense it is
related to an ADIOS, but it is otherwise very different. In a dissipationless disk the
viscosity of the flow is ignored but the magnetic field is included, and the dynamics
of the plasma are described by the equations of ideal magnetohydrodynamics. The
mechanism that launches the wind is related to the geometry of the magnetic field
lines close to surface of the disk; we shall look deeper into this in the following
chapter.
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The most important result of the dissipationless disk model is that the accretion
rate vanishes at the position of the accretor: this implies that all the accreted matter
is ejected. The gravitational energy of the inflow is then transferred with a very
high efficiency to the outflow. This type of model could explain the observations of
systems with very low luminosity disks and powerful jets, such as the radio galaxy
M87.

4.5.5 Neutrino-Cooled Accretion Flows

The currently accepted models for both long and short gamma-ray bursts (GRBs; see
Chap. 6 and Mészáros 2002, Piran 2004, and Ghisellini 2011 for reviews) involve
the formation of a transient, hyperdense, hyperaccreting accretion disk/torus. In the
collapsar model, for example, long GRBs are driven by accretion onto a black hole
formed in the core of a collapsing massive star. The accretion rates involved are
huge, of the order of Ṁ ∼ 10−2–1M� s−1, and the progenitor star is swallowed in
a timescale of ∼10 s. All electromagnetic radiation produced in the accretion disk
formed during the collapse is trapped and advected. The disk cools, instead, more
efficiently by emission of neutrinos.

The properties of accretion flows in the central engines of GRBs including neu-
trino emission have been studied among many others by Popham et al. (1999), Ruf-
fert and Janka (1999), Narayan et al. (2001), di Matteo et al. (2002), Kohri and Mi-
neshige (2002), Aloy et al. (2005), Kohri et al. (2005), Lee et al. (2005), Reynoso
et al. (2006), Chen and Beloborodov (2007), Metzger et al. (2008), and Zhang and
Dai (2009); a review on hyperaccreting disks is presented in Beloborodov (2008).
In these works the accretion flow is essentially modeled as a Shakura-Sunyaev disk
with some modifications to account for the extreme conditions in the source. Besides
cooling by radiation of neutrinos, these refinements include advection, photodisso-
ciation of nuclei, corrections to the pressure because of the dense radiation field and
the degeneracy of matter, and effects of the strong gravitational field.

Hyperaccreting disk can be broadly divided into a number of regions depend-
ing on their properties regarding the emission and propagation of neutrinos. Chen
and Beloborodov (2007) estimated the boundaries between these zones as a func-
tion of Ṁ and R; the plots are shown in Fig. 4.16. The production of neutrinos is
switched on abruptly at a certain radius Rν . This happens where the density and the
temperature are high enough for the mean energy of electrons to be of the order of
∼(mn − mp)c2 (mn is the mass of the neutron), thus triggering neutrino produc-
tion by capture—see Eq. (4.181) below. Approaching the inner edge of the disk,
at radius Rτν the plasma becomes opaque to the propagation of neutrinos and they
thermalize with matter. At fixed Ṁ , the disk becomes opaque for anti-neutrinos at a
different radius Rτν̄ < Rτν . Despite the optical depth being large, the disk still cools
efficiently by emission of neutrinos, since the time it takes neutrinos to diffuse out-
wards is shorter than the advection time. Eventually, in the inner regions of the flow,
neutrinos are mostly advected. Notice that for large Ṁ and R there is a region where
the disk becomes prone to gravitational instabilities.
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Fig. 4.16 Regions of a
neutrino-cooled accretion
disk around a rotating black
hole of mass MBH = 3M�
and spin a∗ = 0.95, for values
of the viscosity parameter
α = 0.1 (top) and α = 0.01
(bottom). Cooling by neutrino
emission is relevant between
the curves labeled “ν-cooled”
and “trapped”. Nuclei (mostly
alpha particles) are
photodissociated in the region
to the left of the curve “free
n, p/α”. For large accretion
rates, the disk becomes
opaque to neutrino
propagation at small radius,
and gravitationally unstable at
large radius. From Chen and
Beloborodov (2007).
Reproduced by permission of
the AAS

We briefly review the basics of neutrino-cooled disk models as presented in
di Matteo et al. (2002) and Reynoso et al. (2006). These authors considered an
accretion disk in steady state12 rotating with Keplerian angular velocity ΩK, and

12The viscous timescales in the inner regions of the disk, where the neutrinos are emitted, are much
shorter than the typical timescales of variation of the accretion rate in the outer disk (di Matteo et al.
2002). Furthermore, Kohri and Mineshige (2002) have shown that for sufficiently large temperature
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adopted the α-prescription to characterize the dissipation of energy by viscosity. In
Reynoso et al. (2006) the classical formulas for a Shakura-Sunyaev disk are cor-
rected for the effects of the strong gravitational field around a Kerr black hole. The
correction factors depend on the radial coordinate, the mass, and the spin of the
hole; they are deduced in Riffert and Herold (1995).

Cooling by neutrino emission is relevant in the inner and hottest (kT � 1 MeV)
part of a hyperdense disk. The accretion rate may be roughly approximated as con-
stant in that region. From Eq. (4.92), Ṁ = −2πRΣvR , where Σ ≈ 2ρH is the
surface density, ρ is the mass density, and H is the half-thickness of the disk. The
expression for H modified to include general relativistic effects is

H ≈ as

ΩK

√
B

C
. (4.176)

The functions B and C approach unity for large R, so Eq. (4.82) is recovered in the
region where strong gravitational effects are negligible.

The total pressure P = ρa2
s has several contributions; it may be written as

P = ρ kT
mN

(
1+ 3Xnuc

4

)
+ 11

2
aT 4 +K

(
ρ

μe

)4/3

+ Uν
3
. (4.177)

The first term is the pressure exerted by the non-degenerate component of the gas;
Xnuc is the fraction of free nucleons and mN is the nucleon mass. The second term
is the pressure of radiation plus relativistic electron-positron pairs; a = 4σSB/c is
the radiation constant. The third term is the pressure of the degenerate, relativistic
component the gas; the constant K is given by

K = 2πhc

3

(
3

8πmN

)4/3

, (4.178)

and μe = 2 is the electron molecular weight (mass per electron). Finally, the fourth
contribution is the pressure generated by neutrinos, where Uν is the neutrino density
(see below).

In steady state, the energy dissipated by viscosity equals the total energy loss in-
cluding advection,Q+ =Q−+Qadv. From Eq. (4.97), duly corrected by relativistic
effects,

Q+ ≈ 3GṀMBH

8πR3

(
D

B

)
, (4.179)

where D→ 1 for large R. The cooling rate Q− must account for all the relevant
energy loss processes. In an hyperdense accretion disk, the most important mecha-

and density (T ∼ 1011 K, ρ ∼ 1013 g cm−3) the timescale of positron/electron capture by nucleons
(see text) and the timescale for neutrino diffusion in the vertical direction are both shorter than the
accretion timescale. Under these conditions, the steady-state approximation is justified.
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nisms are—besides electromagnetic radiation—neutrino emission and photodisso-
ciation of nuclei (mainly alpha particles into free nucleons). Then,

Q− ≈Q−rad +Q−photo +Q−ν . (4.180)

We have already discussed several mechanisms of radiative cooling in Sect. 4.5.3.
Appropriate expressions for Qadv and Q−photo as a function of the temperature, den-
sity, and composition of the plasma are collected in Reynoso et al. (2006) and refer-
ences therein. Notice that energy is advected in the form of radiation and neutrinos
as well as nucleons.13

A number of channels of neutrino emission may be relevant in the environment
of a hyperaccreting disk. The most efficient is the capture of electrons/positrons by
nucleons,

e− + p→ n+ νe, e+ + n→ p+ ν̄e. (4.181)

Other mechanisms include electron/positron annihilation

e− + e+ → νi + ν̄i (4.182)

and nucleon-nucleon Bremsstrahlung

N +N→N +N + νi + ν̄i , (4.183)

where N = p,n, and i = e,μ, τ denote the three neutrino flavors. Useful expres-
sions for the corresponding neutrino emissivities can be found in di Matteo et al.
(2002) and Kohri and Mineshige (2002).

At high accretion rates (Ṁ � 1M� s−1) the material of the disk is not com-
pletely transparent to the propagation of neutrinos. The inverse of the processes in
Eqs. (4.182), (4.182), and (4.183), together with the scattering off nucleons, repre-
sent sources of opacity. If τs and τabs are the optical depths due to neutrino scattering
and absorption, an interpolating formula for Q−ν that is approximately valid both in
the optically thin and the optically thick limit is (e.g. Popham and Narayan 1995)

Q−ν ≈
7

8
σSBT

4
∑
i

[
3

4

(
τi

2
+ 1√

3
+ 1

3τi,abs

)]−1

. (4.184)

Here τi = τi,abs + τi,s is the total optical depth for each neutrino species i; see
Reynoso et al. (2006) a compilation of the formulas. From the opacities we can
also estimate the density of neutrinos Uν (Popham and Narayan 1995),

Uν ≈
∑
i

τi/2+ 1/
√

3

τi/2+ 1/
√

3+ 1/3τi,abs
. (4.185)

13Degenerate matter does not add to the entropy of the flow.
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Fig. 4.17 Top: disk
temperature, density, and
half-thickness as a function of
radius for two values of the
accretion rate,
Ṁ = 0.1M� s−1 (solid line)
and Ṁ = 1M� s−1 (dashed
line). Bottom: relative
importance of neutrino
cooling and advection as a
function of radius for two
values of the accretion rate,
Ṁ = 0.1M� s−1 (top panel)
and Ṁ = 1M� s−1 (bottom
panel). In all models
M = 3M�, a∗ = 0.9, and
α = 0.1. From Reynoso et al.
(2006), reproduced with
permission ©ESO

Figure 4.17 shows the temperature, density, and disk half-thickness profiles as a
function of R for Ṁ = 0.1 and 1M� s−1, obtained by Reynoso et al. (2006). Also
shown are the ratios fν ≡Qν/Q+ and fadv ≡Qadv/Q

+, that quantify the fraction
of the dissipated energy that is released as neutrinos and advected, respectively.
Neutrino cooling dominates over a large range of radii. Advection is more important
in the innermost (this is a consequence of the relativistic corrections) and in the outer
regions of the disk. Similar results were found by di Matteo et al. (2002).

The typical energy released during a GRB (assuming relativistic beaming) is
1051 erg (e.g. Piran 2003). Such a large amount of energy has two possible sources:
the rotational energy of the black hole and the binding energy of the accretion flow.
The rotational energy of a black hole may be extracted via the Blandford-Znajek
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mechanism; we shall discuss it in the next chapter. The gravitational energy of the
infalling matter, on the other hand, is expected to be released in the form of neutrinos
that subsequently annihilate into pairs, ν+ ν̄→ e++ e−.14 This process might load
the relativistic jets as first suggested by Eichler et al. (1989).

There are some factors that limit the efficiency of neutrino annihilation. In the
first place, neutrinos and antineutrinos must be able to escape the disk before being
advected. Furthermore, the cross section for this process is very small (∼10−44 cm2)
and only a fraction 10−2–10−3 of the energy in neutrinos is converted to pairs. Re-
cent calculations by Zalamea and Beloborodov (2011) predict a typical annihilation
luminosity of Lνν̄ ≈ 1052 erg s−1. The exact result depends on the values of α, Ṁ ,
M , and strongly on the spin parameter a∗. For M = 3M�, Ṁ = 0.3M� s−1, and
a∗ = 0.95, for example, these authors find that neutrino annihilation can easily sup-
ply the observed luminosity of GRBs.

To conclude, we notice that the copious emission of neutrinos may also drive
a mildly relativistic, baryon-loaded wind from the disk (e.g. Levinson 2006). This
wind could help to collimate the ultra relativistic jet thought to be launched from
the central core.

4.5.6 Note on the Calculation of a Comptonization Spectrum

If a population of electrons and a radiation field spatially coexist, unless they are
in thermal equilibrium, there will be a net exchange of energy because of elastic
collisions between the two species. When the photon transfers energy to the electron
we speak of Compton scattering, whereas in the opposite case the process is called
inverse Compton scattering.

The modification of the photon distribution due to repeated scatterings off ther-
mal electrons is called Comptonization. This process is of interest since the charac-
teristic power-law spectrum of black hole coronae is usually interpreted as arising
from Comptonization of photons from the accretion disk by electrons in the corona.

We can estimate quantitatively the relevance of Comptonization introducing a
parameter y defined as

y =
(
!ε

ε

)
Ns, (4.186)

where ε is the energy of the photon, !ε is its average energy change in a single
collision, and Ns is the mean number of scatterings.

An approximate expression for Ns can be calculated as follows. Let L be the
typical size of the source and ne the number density of electrons. The mean free
path of a photon will be λs = 1/neσIC, where σIC the cross section for Compton
scattering. The optical depth of the source is then τs ≈ L/λs.

14In the strong magnetic field (∼1015 G) expected to exist in the central engines of GRBs, neutrinos
can also create pairs through the reaction ν→ ν + e+ + e−, see e.g. Gvozdev and Ognev (2001).
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If the source is optically thin Ns ≈ τs � 1, but if the source is optically thick the
photons will diffuse in a random walk. The distance covered by a photon after N
scatterings is 〈x2〉1/2 ∼√N λs. Taking L= 〈x2〉1/2 and N =Ns, we obtain that in
the optically thick case Ns ≈ τ 2

s . Considering the two limits, we can approximate
the number of scatterings as

Ns ≈max
{
τs, τ

2
s

}
. (4.187)

There is no general expression for the fractional energy change!ε/ε of the pho-
ton since this depends on the form of the energy distribution of the electrons. In the
special case of a thermal, non-relativistic distribution of electrons of temperature
kTe < mec

2,

!ε

ε
= 4kTe − ε

mec2
(4.188)

per scattering. When 4kTe� ε, on average the electron transfers energy to the pho-
ton. When 4kTe� ε, the electron’s thermal energy is much smaller than the initial
photon energy, and the photon loses energy on average.

Suppose that the initial energy of the photon is εi � 4kTe < mec2. After one
scattering the energy of the photon will be ε2 such that

A≡ ε2

εi
= εi +!ε

εi
≈ 1+ 4kTe

mec2
. (4.189)

After Ns collisions the final energy εf of the photon is then amplified in a factor

εf

εi
≈
(

1+ 4kTe
mec2

)Ns

≈ exp

(
Ns

4kTe
mec2

)
≈ exp(y). (4.190)

For y � 1, then, the primary photon spectrum remains largely unaffected by
scattering. When y� 1 photons reach equilibrium with the electrons. The modified
photon spectrum depends basically on Te and has the shape of a Wien distribution
∝ e−ε/kTe . In this limit the process is called saturated Comptonization. The inter-
mediate regime y ∼ 1 is known as unsaturated Comptonization. In this regime the
Comptonized spectrum is the result of successive scatterings, and depends both on
the electron temperature and the optical depth.

In an optically thin medium of optical depth τs � 1, the shape of the Comp-
tonized spectrum can be estimated as follows. The probability of a photon undergo-
ing k scatterings before escaping the source is ∼ τ ks . If I (εi) is the initial intensity
of photons at energy εi , then after Comptonization the intensity at energy εf will be
approximately

I (εf )≈ I (εi)τ ks ≈N(εi)
(
εf

εi

)−α
, (4.191)

where α =− ln τs/ lnA. The Comptonized spectrum takes the form of a power-law.
In the general case, the evolution of the (isotropic) photon distribution n(ν) is de-

scribed by the Boltzmann equation for the process e−(p)+ γ (ν)� e−(p′)+ γ (ν′),
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where p and p′ are the initial and final momenta of the electron, and ν and ν′ the
initial and final frequencies of the photon, respectively. If f (p) is the Maxwellian
distribution of electrons, the Boltzmann equation is

∂n

∂t
= c

∫
dp

∫
dΩ

dσ

dΩ

{
f
(
p′
)
n
(
ν′
)[

1+ n(ν)]− f (p)n(ν)[1+ n(ν′)]}. (4.192)

The first term represents the contribution to n(ν) due to scatterings of photons with
frequency ν′, whereas the second term accounts for the decrease in n(ν) due to
photons scattered into frequency ν′. The factors in square brackets appear because of
the use of the Bose-Einstein statistics: the probability of scattering from frequency
ν′ to ν is increased by the factor [1+ n(ν)], because photons tend toward mutual
occupation of the same quantum state. Finally, dσ/dΩ is the differential Compton
cross section.

Equation (4.192) can be solved analytically only in a few cases or under some
approximations. In particular, if the electrons are non-relativistic the energy transfer
h!ν to the photons per collision is small. The Boltzmann equation may then be
expanded in powers of !ν. The expansion up to second order yields the so-called
Kompaneets equation (Kompaneets 1957),

∂n

∂tc
=
(
kTe

mec2

)
1

x2

∂

∂x

[
x4
(
∂n

∂x
+ n+ n2

)]
. (4.193)

Here x = hν/kTe , and tc = ct/λs is the mean time interval between successive scat-
terings. Recall that Eq. (4.193) correctly describes the evolution of the photon dis-
tribution under the assumptions that the electrons are non-relativistic and have a
thermal distribution.

The photon distribution in equilibrium must be the Bose-Einstein distribution.
You can check that setting the time derivative to zero, the solution of the Kompaneets
equation is indeed of the form n= [exp(x − x0)− 1]−1.

We are interested in finding a solution for the case in which y ∼ 1 is reached
for a certain frequency ν̃ such that hν̃ ∼ kTe. This situation describes a regime of
unsaturated Comptonization, since the electrons are not energetic enough to satu-
rate the photon spectrum to a Wein distribution. With some simplifying assump-
tions, under these conditions an approximate solution of the Kompaneets equation
may be found. If the input photon spectrum is I0(ν) is different from zero only for
ν < ν0 � kTe/h, the approximate solution of the Kompaneets equation in steady
state is (see e.g. Rybicki and Lightman 1979)

I (ν)≈ I0
(
ν

ν0

)3+m
, hν� kTe,

I (ν)≈ ν3 exp

(
− hν
kTe

)
, hν� kTe.

(4.194)
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The spectral index is given by

m=−3

2
±
√

9

4
+ 4

y
, (4.195)

with a plus sign for y � 1 and a minus sign for y � 1. The photon spectrum is,
again, a power-law. This mechanism is though to produce the observed power-law
X-ray spectrum from stellar-mass black hole coronae.

4.6 Accretion in Binary Systems: Roche Lobe Overflow

We have already discussed some details of accretion in wind-fed binaries. There is
another accretion mechanism through which matter can be transferred from a star to
a compact object, namely the overflow of the Roche lobe.

Let us consider a binary system formed by black hole of mass M and a star of
mass M∗ in a circular orbit. It is easier to treat the problem from a reference frame
rotating with the angular velocity of the binary, since in this frame the two masses
are fixed. The origin of the coordinate frame is at the center of mass of the system.
In the plane of the orbit, the effective potential on a test particle resulting from the
gravitational and centrifugal forces15 is

Φ =−GM∗
R1

− GM
R2

− Ω
2(x2 + y2)

2
, (4.196)

where r = (x, y) is the position of the particle, R1 = |r − r1| and R2 = |r − r2|
indicate the distances of the particle toM∗ andM , respectively, andΩ is the angular
velocity associated to the radius of the orbit a,

a =
[
G(M +M∗)

Ω2

]1/3

. (4.197)

The total energy of the particle is

Φ + 1

2
v2 =E0. (4.198)

For low energies, the particle, if emitted by the star, will fall back to it. At the turning
point its velocity will be v = 0. In such a case, Φ = E0. This condition defines
equipotential surfaces (Hill’s surfaces) that limit the motion of particles of energy
E0. Some equipotentials curves in the plane of the orbit are plotted in Fig. 4.18.
The function Φ has two deep valleys centered at the positions of M and M∗; in
these regions the equipotentials are approximately circular. Particles with energy

15The Coriolis force is not included in Eq. (4.196).
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Fig. 4.18 Equipotential
curves for a mass ratio
q =M/M∗ = 0.3. The thick
curve defines the Roche lobes
of the two components of the
binary, that come in contact at
the Lagrangian point L1. The
points L1, L2, and L3 are
saddle points of Φ , whereas
L4 and L5 are local maxima

corresponding to such equipotentials are trapped in the gravitational well of one of
the stars. At a certain energy ER =ΦR, the Hill’s surfaces of both masses come in
contact; the part of the separatrix curve that surrounds each star is called the Roche
lobe. The point of contact of the two Roche lobes is the inner Lagrangian point L1
(a saddle point of Φ) where the sum of all forces equals zero,

∇Φ = 0. (4.199)

At some stage of its evolution the donor star may increase its radius and fill its
Roche lobe. It then starts to inject matter onto the black hole through the inner La-
grangian point. There, a particle can go from one lobe to the other without losing
energy. The specific angular momentum lΩ of the injected gas is related to the an-
gular momentum of the orbital motion

lΩ ≈Ωa2. (4.200)

The thickness of the gas jet crossing the Lagrange point is ∼ 0.1R∗, where R∗ is
the radius of the donor star. The flow rate is determined by the state of evolution of
the star and the ratio q =M/M∗. For q� 1, the flow occurs on a time scale

τ = GM∗
R∗L∗

, (4.201)

where L∗ is the total luminosity of the star. Then, the matter flow rate is

Ṁ = M∗
τ
. (4.202)
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The jet of gas collides with the outer part of the disk. Since the size of the disk
is of the order of the size of the Roche lobe, we can write the time the gas takes to
move along the whole disk as

tR ≈ Rout

vR
≈ a

vr
≈ a

αvφ(H/R)2
≈ Porb

2πα

(
R

H

)2

, (4.203)

where Porb is the orbital period, and we have used the standard thin disk solution for
vR . Since for thin disks H �R and α < 1, the time scale of radial motion of matter
is longer than the orbital period

tR

Porb
� 1. (4.204)
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Chapter 5
Jets

5.1 Phenomenology

Jets are collimated flows of particles and electromagnetic fields. They are observed
in a wide variety of astrophysical systems, from protostars to active galactic nuclei.
Astrophysical jets seems to be associated with accretion onto a compact, spinning,
central object. One more ingredient appears to be fundamental for the formation of
jets (at least for relativistic jets), and that is a large-scale magnetic field.

The most remarkable property of jets is that their length exceeds the size of the
compact object by many orders of magnitude. For instance, in AGN the jets are
generated in a region of no more than 100 gravitational radii of the central black hole
(∼1015 cm), and propagate up to distances of ∼1024 cm, well into the intergalactic
medium. Along the jets, the specific volume of plasma increases enormously and the
corresponding adiabatic losses, in combination with various radiative losses, ensure
that the particles lose essentially all their “thermal” energy very quickly. Yet, high-
resolution radio and X-ray observations show that the jet brightness does not decline
so rapidly. This suggests that most of the jet energy is in a different form and that
the observed emission is the results of its slow dissipation.

We shall present the basics of the current best models developed to explain the
launching, collimation, and acceleration of jets. We shall begin by the magneto-
hydrodynamic model, discussing it in some detail both in the non-relativistic and
relativistic case. It is the accretion disk that plays the leading role in this model.
Later we shall introduce the Blandford-Znajek mechanism, in which the main part
is played by the central rotating black hole and its magnetosphere.

5.2 The Equations of Magnetohydrodynamics

The theory of magnetohydrodynamics (MHD) is one possible approach to the prob-
lem of a fluid in the presence of an electromagnetic field. For the MHD approxima-
tion to be valid two basic conditions must be fulfilled: the fluid must be electrically
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quasi-neutral (i.e. with a very small charge density) and it must form a plasma. The
second condition implies that the Debye length λD of the charged particles is much
smaller than the typical length scale of the system, and at the same time the number
of particles in a volume λ3

D is large enough to treat them as a fluid.
In non-relativistic MHD the relevant field is the magnetic field B. Indeed, if the

velocity of the flow is v� c everywhere, it can be shown that |E| � |B|. This also
means that the displacement current may be ignored, so that

∇ ×B= 4π

c
J (5.1)

where J is the electric current vector. Taking further into account that the charge
density is, by assumption, very small, the expression for the Lorentz force simplifies
to

fL = J×B
c

= 1

4π
(∇ ×B)×B. (5.2)

Another of the hypothesis of MHD is that the flow satisfies of Ohm’s law in the
simple form

J= σ
(

E+ v
c
×B

)
, (5.3)

where σ is the electric conductivity of the plasma.
To these equations we must add the rest of Maxwell’s equations, namely

∇ ·B= 0, (5.4)

∇ ×E=−1

c

∂B
∂t
, (5.5)

∇ ·E= 4πρe. (5.6)

The charge density ρe is not a relevant parameter; if needed, it can be calculated
from Eq. (5.6) once the problem is solved and E is known.

Combining Eqs. (5.1), (5.3), and (5.5) we get a central equation in MHD, the
so-called induction equation for the magnetic field

∂B
∂t
=∇ × (v×B)+ c2

4πσ
∇2B. (5.7)

The induction equation states that the magnetic field at a given point in space varies
in time because it is advected with the flow (first term on the right-hand side) and
because it diffuses (second term on the right-hand side). A supposition usually made
in astrophysical applications of MHD is that the conductivity of the plasma is very
large. Then the diffusive term in Eq. (5.7) can be neglected compared to the convec-
tive term. This approximation is known as ideal MHD.
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The set of equations of MHD is to be completed with the equations for the con-
servation of mass and momentum (including the Lorentz force but not viscosity)

∂ρ

∂t
+∇ · (ρv)= 0, (5.8)

ρ

[
∂v
∂t
+ (v · ∇)v

]
=−∇P − ρ∇Φ + 1

4π
(∇ ×B)×B, (5.9)

plus an equation for the conservation of energy and an equation of state. Here, as
usual, P is the pressure, ρ is the mass density, and Φ is the gravitational potential.

5.3 The Structure of Non-relativistic Ideal MHD Jets

We shall develop in some detail the theory that describes the structure of jets in
steady state in the non relativistic ideal MHD approximation. The set of equations
to be solved is

∇ ×B= 4π

c
J, (5.10)

∇ ·B= 0, (5.11)

∇ ×E= 0, (5.12)

∇ ·E= 4πρe, (5.13)

E+ 1

c
v×B= 0, (5.14)

∇ × (v×B)= 0, (5.15)

∇ · (ρv)= 0, (5.16)

ρ(v · ∇)v=−∇P − ρ∇Φ + 1

4π
(∇ ×B)×B. (5.17)

We shall work in cylindrical coordinates (r,φ, z) and make the key assumption
that the flow is axisymmetric, i.e. ∂φ = 0. Because of this symmetry there exists a
number of conserved quantities that constrain the dynamics of the flow, allowing to
obtain some important results without fully solving the equations.

Let us decompose the magnetic field as

B= Bp +Bφφ̂. (5.18)

We call Bp ≡ Br r̂ + Bzẑ the poloidal component of the field, whereas Bφ is the
toroidal component. It follows from Eq. (5.11) and the condition of axial symmetry
that Bp may be written in terms of a scalar flux function or stream function Ψ as

Bp =∇ ×
(
Ψ

r
φ̂

)
= 1

r
∇Ψ × φ̂, (5.19)
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Fig. 5.1 Left: two different
magnetic surfaces
characterized by values of the
flux function Ψ = Ψ1 and
Ψ = Ψ2, separated by a radial
distance δr . The magnetic
field lines are indicated.
Right: projection of a field
line in the poloidal plane. The
poloidal velocity vp is parallel
to the poloidal magnetic field
Bp, whereas the electric field
E and the gradient of the flux
function ∇Ψ are normal to it

thus

Br =−1

r

∂Ψ

∂z
, Bz = 1

r

∂Ψ

∂r
. (5.20)

The toroidal component Bφ bears no direct relation to Ψ .
From Eq. (5.19) we get that the magnetic flux through a circular cross section of

radius r of the jet is 2πΨ (r, z), hence the name of flux function. It is also straight-
forward to check that

B · ∇Ψ = Bp · ∇Ψ = 0, (5.21)

so Ψ is constant along magnetic field lines. Equivalently, the vectors B and Bp lie
on surfaces where Ψ = constant; these are called magnetic surfaces, see Fig. 5.1.

The induction equation (5.15) implies that

v×B=∇χ (5.22)

for some function χ . This result has a number of interesting consequences. First,
notice that since E=−(v/c)×B, then E=−∇χ/c; the function χ is therefore the
scalar potential of electromagnetism. Second, since ∂φχ = 0 we have that Eφ = 0;
the electric field has no toroidal component. But also

∇χ |φ = vp ×Bp = 0, (5.23)

which means that the poloidal velocity is parallel to the poloidal magnetic field.
Then we can write

vp = κ(r, z)Bp (5.24)

for some scalar function κ(r, z). Applying this result in the continuity equation we
get that Bp · ∇(ρκ)= 0—the product ρκ is constant on magnetic surfaces and must
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be a function of Ψ only. Hence

ρκ = ρvp

Bp
= η(Ψ ), (5.25)

what states that the poloidal mass flux per unit of poloidal magnetic field is constant
along field lines. Notice that ρvp is proportional to the mass flux through a ring of
area dA between r and r + dr on a cross section of the jet, whereas the magnetic
flux across the same annulus is proportional to Bp. We can then write

η(Ψ )= dΨm

dΨ
, (5.26)

where dΨm = ρvpdA and dΨ = BpdA. Because of this result, η is sometimes called
the mass load function.

Let us now analyze the poloidal component of Eq. (5.22),

vp ×Bφφ̂ + vφφ̂ ×Bp =∇χ |p. (5.27)

Using that χ = χ(Ψ ) and Eqs. (5.19) and (5.24) we obtain that

vφ = rΩ(Ψ )+ 1

ρ
η(Ψ )Bφ. (5.28)

Here Ω(Ψ ) ≡ dχ/dΨ is a function with dimensions of angular velocity. Since it
depends only on Ψ , it is constant along field lines and on magnetic surfaces.1 Notice
that Ω is not equal to the angular velocity of matter Ωm = vφ/r , unless ρ becomes
infinite.

Putting Eqs. (5.25) and (5.28) together, we find an expression for the velocity
field in terms of the magnetic field

v= rΩ(Ψ )φ̂ + 1

ρ
η(Ψ )B. (5.29)

Although the streamlines are contained in the magnetic surfaces, the total velocity is
not parallel to the total magnetic field. Equation (5.29) is usually interpreted saying
that the plasma moves “like beads threaded in rotating wires”, the wires being the
magnetic field lines that rotate with angular velocityΩ . Indeed, in a reference frame
that rotates with Ω , from Eq. (5.29) we see that the velocity is completely directed
along B. This is why the functionΩ is sometimes referred to as the angular velocity
of the magnetic field lines. All the lines on the same magnetic surface rotate with
the same velocity, but this differs between surfaces since Ω =Ω(Ψ ).

We can determine the value of Ω(Ψ ) on each field line as follows. Suppose that
there is a point r0 (the footpoint) on a poloidal field line where Bφ(r0) = 0. For

1We can now conveniently write the electric field only in terms of the flux function as
E=−(Ω/c)∇ψ .
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example, if the system has reflexion symmetry with respect to the equatorial plane,
such point must lie on the plane z = 0. Then Ω(Ψ )= vφ(r0)/r0 =Ωm(r0); at the
footpoint (and only there) the angular velocity of the field lines equals the angular
velocity of matter.

Let us now investigate the equation of motion (5.17) starting by the toroidal com-
ponent. After applying some vector identities, this component may be written as

ρvp · ∇(rvφ)= 1

4π
Bp · ∇(rBφ). (5.30)

Using Eq. (5.24) to eliminate the poloidal velocity we obtain

Bp · ∇
(
rvφ − rBφ

4πρκ

)
= 0. (5.31)

Then the quantity

rvφ − rBφ

4πρκ
≡ L(Ψ ) (5.32)

is conserved along poloidal field lines and is only function of Ψ . The constant L
is nothing else but the angular momentum per unit mass. Both matter and toroidal
magnetic field contribute to it.

Combining Eqs. (5.24), (5.28), and (5.32) we can now write Bφ and vφ in terms
of conserved quantities,

rBφ = 4πη

(
L− r2Ω

M2
A − 1

)
, (5.33)

rvφ = M
2
AL− r2Ω

M2
A − 1

. (5.34)

Here we have defined the Mach-Alfvén number

M2
A ≡

v2
p

v2
Ap

, (5.35)

where vAp is the poloidal component of the Alfvén velocity

vA ≡ B√
4πρ

. (5.36)

The Alfvén radius rA is the point on each poloidal field line whereMA = 1; the loci
of all rA define the Alfvén surface.

The numerator of Eq. (5.34) must vanish at r = rA in order to avoid a divergence.
This fixes the value of the angular momentum on each field line,

L(Ψ )= r2
AΩ(Ψ ). (5.37)
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From Eq. (5.25) and the definition of the Alfvén velocity, it follows that the mass
density at the Alfvén radius on each poloidal field line is ρA = 4πη2.

We now see that up to the Alfvén surface the flow may be considered as approxi-
mately co-rotating with the field lines, since from Eq. (5.34) it results that vφ ≈Ωr
for M2

A � 1. The magnetic field, on the other hand, is dominated by the poloidal
component. From Eqs. (5.25) and (5.29) we get

Bφ

Bp
= vφ −Ωr

vp
. (5.38)

For r� rA the numerator is close to zero and then Bφ � Bp.
Far from the Alfvén surface we expect that ρ < ρA (Heyvaerts and Norman

1989). Writing Eq. (5.34) as

vφ =Ωr
(

1− 1− r2
A/r

2

1− ρ/ρA

)
, (5.39)

we find that vφ ≈ 0 for r � rA. The velocity in this region is predominantly
poloidal; from Eqs. (5.25) and (5.36) we get

v2
p =

(
ρA

ρ

)
v2

Ap > v
2
Ap. (5.40)

Finally, we must obtain an equation for the energy. For definiteness we shall
adopt a polytropic equation of state

P =Kργ , (5.41)

whereK(Ψ ) is constant on magnetic surfaces. The desired expression for the energy
is obtained taking the dot product of Bp and Eq. (5.17), yielding

E(Ψ )= 1

2
v2 + h+Φ − rΩBφ

4πη
. (5.42)

This is the Bernoulli equation for the flow, that states the conservation of energy
per unit mass along a poloidal field line. The function h is the specific enthalpy of
the plasma. For an equation of state of the form (5.41) with γ �= 1, it is given by
h= γ a2

s /(γ − 1).
Like the angular momentum, the energy also has a contribution from the mag-

netic field. It can be shown from Eqs. (5.14) and (5.29) that the poloidal component
of the Poynting vector is

Sp = c

4π
(E×B)p =− rΩBφ

4π
Bp, (5.43)

so the fourth term on the right-hand side of Eq. (5.42) accounts for the poloidal flux
of electromagnetic energy.
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Fig. 5.2 Poloidal magnetic
field lines in the split
monopole configuration

The last equation to be analyzed is the poloidal component of the equation of
motion (5.17). This cannot be reduced to a conservation law. However, taking the
dot product with ∇Ψ we obtain a differential equation for the flux function Ψ (r, z)
in terms of the mass density and conserved quantities. This equation is known as the
Grad-Shafranov or transfield equation. It may be written in many different ways;
here we quote the result as given in Ferreira (2002)

∇ ·
[
(MA − 1)

∇Ψ
4πr2

]
− (
B2
φ +M2

AB
2
p

) η′
4πη

= ρ
[
E′ −Ωm(ΩrA)

′ − (
Ωmr

2 −Ωr2
A

)
Ω ′ − a2

s

γ (γ − 1)
K ′

]
. (5.44)

The Bernoulli and the Grad-Shafranov equations may be expressed only in terms
of the flux function Ψ and another variable, say the mass density ρ, to obtain a sys-
tem of two coupled, non-linear differential equations. This system of equations is,
however, so complicated that analytic solutions can be obtained only under some
simplifying assumption such as self-similarity (e.g Blandford and Payne 1982; Li
et al. 1992; Vlahakis and Tsinganos 1998), or in some asymptotic regime (e.g.
Begelman and Li 1994; Heyvaerts and Norman 2003a; Lyubarsky 2009). A different
approach is to assume some functional form for the poloidal magnetic field. A pos-
sible choice is the split monopole configuration, in which the poloidal magnetic field
is radial and has opposite polarity on both sides of the equatorial plane, see Fig. 5.2.
In cylindrical coordinates a split monopole poloidal field decays as Bp = B0(r0/r)

2,
where r0 is the radius of the footpoint of the field line and B0 = Bp(r0). The
split monopole configuration was adopted in some very well-known early works
on winds and jets, such as those of Weber and Davis (1967) and Michel (1969). The
relative simplicity of those models allowed to obtain analytical results that helped
grasp the basics of the MHD theory of outflows. Beware, however, that any model
with prescribed field line shapes does not satisfy the Grad-Shafranov equation and
thus is not self-consistent.
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Five additional unknown functions of Ψ appear in Eqs. (5.42) and (5.44), the
integrals of motion E(Ψ ), L(Ψ ),Ω(Ψ ), η(Ψ ), andK(Ψ ). They must be prescribed
or fixed from the boundary conditions. For example, if the jet is launched from an
accretion disk rotating with Keplerian angular velocity, we have that Ω =ΩK(r0),
where r0 is the radius of the footpoint of the magnetic field line.

An important property of the equations of axisymmetric MHD flows is that, be-
sides the Alfvén surface, they have other two critical surfaces. These correspond to
the points where the poloidal velocity reaches the speed of each of the magnetosonic
waves propagating along the poloidal magnetic field. These are given by the roots
of the equation

v4 − v2(a2
s + v2

A

)+ a2
s v

2
A cos2 α = 0 (5.45)

where cosα = B/Bp.2 The two solutions, vSM and vFM, are called the slow and fast
magnetosonic speed, respectively. The corresponding critical surfaces are called the
slow and fast magnetosonic surfaces. Demanding that the solution is regular at these
point imposes two constraints on the integrals of motion.

The mathematical characteristics of the Grad-Shafranov equation allow to define
yet another critical velocity. This is the poloidal cusp velocity

v2
C =

a2
s v

2
Ap

a2
s + v2

A

= v2
SMv

2
FM

v2
SM + v2

FM

. (5.46)

It is smaller than all the other characteristic speeds of the problem, including the
speed of sound. The Grad-Shafranov equation is elliptic as long as vp < vC. It be-
comes hyperbolic for vC < vp < vSM, then again elliptic for vSM < vp < vFM, and
finally again hyperbolic for vp > vFM. This adds much difficulty to the numerical
resolution of the problem.

5.3.1 Collimation

Beyond the Alfvén surface the toroidal component of the magnetic field becomes
larger than the poloidal component. The force exerted by the toroidal field helps
collimate the jet, where by collimation we understand the degree of parallelism
of the streamlines. A cylindrical jet where all the streamlines are parallel to the
symmetry axis is then perfectly collimated. Notice that collimation is different from
confinement, that refers to the “width” of the outflow.

An useful and equivalent way of writing the Grad-Shafranov equation is (e.g.
Ustyugova et al. 1999; Ferreira 2002)

(
v2

p − v2
Ap

) 1

Rc
=− 1

8πρr2

∂

∂n
(rBφ)

2+ cos θv2
φ

r
− 1

ρ

∂

∂n

(
P + B

2
p

8π

)
− ∂Φ
∂n
. (5.47)

2In the general case α is the angle between the magnetic field and the wave vector. Since we are
interested in waves propagating along the poloidal magnetic field, here cosα = B/Bp.
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Fig. 5.3 A poloidal magnetic
field line in the meridional
plane. The unit vectors
tangent and normal to the line
at an arbitrary point are
indicated. The angle θ is the
inclination of the line

Here θ is the angle between the poloidal field line and the z-axis, n is a coordinate
in the outwards direction perpendicular to the line, and Rc is the radius of curvature
of the line. As seen from Fig. 5.3, cos θ = ŝ · ẑ= n̂ · r̂ , whereas

n̂

Rc
= ∂ŝ
∂s

or
1

Rc
= ∂θ
∂s
. (5.48)

Let us simplify Eq. (5.47) in the limit r � rA. In this region, as we have seen,
the toroidal velocity is very small, the poloidal velocity is larger than the Alfvén
value, and the toroidal magnetic field is much larger than the poloidal component.
We can also assume that the effects of pressure and gravitational attraction are of no
importance. Equation (5.47) then reduces to

v2
p

Rc
=− 1

8πρr2

∂

∂n
(rBφ)

2. (5.49)

The curvature of the field lines is determined by the variation of the toroidal field
for radius larger than the Alfvén radius. The force exerted by the toroidal field is
usually called hoop stress. Notice that it may have a collimating or a decollimating
effect depending on the shape of the surfaces (rBφ)2 = constant.

By Ampère’s law, the toroidal magnetic field is related to the poloidal current
density as

Bφ(r, z)= 2

cr

∫
S

J · dS= 2

cr
I (r, z), (5.50)

where I is the net electric current through a circular cross section of radius r
at height z in the jet. Then, the force exerted by the toroidal field depends on
the sign of the enclosed current. Heyvaerts and Norman (1989) showed that the
asymptotic shape of the field lines is cylindrical if there is a net current at infinity,
I (r, z) �= 0 for r→∞. If the current at infinity vanishes the jet is instead collimated
to paraboloids. The outflow may also remain asymptotically uncollimated (conical
with radial streamlines). It is also possible to obtain a mixed asymptotic behavior,
with the core of the jet (close to the axis) collimated to cylinders and an uncolli-
mated outer region. This occurs when there exists a return current outside the core
or in a current sheet.3

3Recall that the current I is not constant on magnetic surfaces, and so J can cross them.
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5.3.2 Acceleration

To investigate the acceleration of the flow we must analyze the poloidal component
of the equation of motion (5.17). We project it onto a unit vector ŝ tangent to the
poloidal field lines to obtain

1

2

∂v2
p

∂s
=Ω2

mr sin θ − 1

ρ

∂P

∂s
− ∂Φ
∂s
− 1

8πρr2

∂

∂s
(rBφ)

2. (5.51)

The gravitational force opposes the outwards acceleration of the flow, whereas
the pressure gradient favors it because the pressure drops as the outflow expands.
The centrifugal term (first term on the right-hand side) always helps to accelerate
the plasma as long as the field lines are inclined outwards from the symmetry axis.
Under the same conditions, however, the action of the magnetic field may accelerate
or decelerate the flow depending on the behavior of Bφ . So the acceleration is, in
general, magnetocentrifugal.

As we have already discussed, centrifugal acceleration is a good approximation
up to the Alfvén radius, since for r � rA the flow “co-rotates” with the field lines.
Then vφ/r = Ωm ≈ Ω and the first term in Eq. (5.51) increases linearly with r .
Further acceleration beyond rA depends on the details of the magnetic field config-
uration.

5.3.3 Launching

The launching of an outflow from an accretion disk requires that this is threaded
by an ordered, large-scale magnetic field. Since astrophysical black holes are not
expected to have charge, this field must be generated in the disk itself by electric
currents. We shall not deal with the mechanism of generation of large-scale mag-
netic field in accretion disks; you can see, for example, the works of Tout and Pringle
(1996), Spruit and Uzdensky (2005), Lovelace et al. (2009), and Bisnovatyi-Kogan
and Lovelace (2007, 2012) on this topic.

The magnetic field near the disk surface cannot have an arbitrary geometry if
it is to mediate the launching of the jet. A general constraint on the inclination of
the field lines can be found by considering the shape of the effective potential Φeff
to which a particle near the disk surface is subject (Blandford and Payne 1982).
The effective potential per unit mass is the sum of the gravitational potential and a
centrifugal term,

Φeff =− GMBH√
r2 + z2

− 1

2
Ω2

mr
2. (5.52)

We have seen that before the Alfvén radius matter is approximately in co-rotation
with the magnetic field lines at angular velocity Ω . Since the footpoints of the lines
are anchored to the disk, Ω may be assumed to equal the angular velocity of the
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Fig. 5.4 Equipotential curves
for the effective potential.
The thick solid line divides
the regions of increasing
(dotted lines) and decreasing
(thin solid lines) potential at
an arbitrary point r = r0 on
the plane z= 0

disk. In a geometrically thin disk the rotation velocity is Keplerian, soΩ =ΩK(r0),
where r0 is the radius of the footpoint of the field line. We may then write Eq. (5.52)
as

Φeff =−GMBH

[
r0√
r2 + z2

+ 1

2

(
r

r0

)2]
. (5.53)

The equipotential curves of Φeff are plotted in Fig. 5.4. With respect to the solid
thick line, the effective potential increases towards the region of dotted lines and de-
creases towards the regions of thin solid lines. The first derivatives of Φeff vanish at
(r0,0). For a particle at this position in the disk surface to be in unstable equilibrium
with respect to a small displacement along the field line, we must demand that the
second derivative of the effective potential along the field line at (r0,0) is negative.
This yields the constraint

∂2Φeff

∂s2
(r0,0)=−GMBH

r3
0

(
3 sin θ2 − cos θ2)< 0, (5.54)

where θ is the angle between the field line and the z-axis at (r0,0). The condition
for unstable equilibrium is then that θ > 30◦; this is the minimum inclination the
field lines must have in order to accelerate matter outwards from the surface of the
disk.4,5 Notice that it is independent of r0. Since the critical angle is relatively large,
jets launched by this mechanism are not well collimated near the base.

4This is the minimum angle for instability in flat and Schwarzschild space-time. It is slightly
smaller for a Kerr black hole with spin a∗ = −1, and approaches 90◦ for a∗ = 1; a∗ is taken
positive (negative) if the black hole and the disk rotate in the same (opposite) sense.
5The critical angle is the same for a field line inclined inwards, but this case is of no interest for
the launching of an outflow.
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For inclinations larger than 30◦ matter has to overcome a potential barrier before
reaching a region of decreasing potential. This may happen if the zone above the
surface of the disk is sufficiently hot. Eventually, for θ � 30◦ the maximum of Φeff
of along the field line is very far away from the disk and no significant outflow is
expected to be launched from this region.

5.4 Relativistic MHD Jets

We now discuss the generalization of the theory presented in the previous section
to the case of axisymmetric MHD relativistic outflows (those with bulk velocities
that may get close to the speed of light) in flat space-time. Many of the results we
obtained for non-relativistic outflows remain valid in the relativistic case. Perhaps
the most important difference is that in relativistic MHD the electric field cannot
be neglected compared to the magnetic field. Moreover, we shall see that the force
exerted by electric field plays a fundamental role in the collimation of the jet.

Let γ = 1/
√

1− v2/c2 be the local bulk Lorentz factor of the jet, u = γ v the
spatial part of the 4-velocity per unit mass, and ρ and P the mass density and the
pressure in the rest frame of the outflow (also called the co-moving reference frame).
The relativistic versions of the continuity equation and the equation of motion in
steady state read (e.g. Li et al. 1992; Heyvaerts and Norman 2003a, 2003b; Vlahakis
2004; Lyubarsky 2009)

∇ · (ρu)= 0 (5.55)

and

ρ(u · ∇)(ξu)=−∇P + ρeE+ J×B
c

+ γρ∇
(
ξγ

GMBH√
r2 + z2

)
. (5.56)

The relativistic enthalpy per unit mass is c2ξ , where ξ is defined as

ξ = 1+
∫

1

ρc2
dP = 1+ Γ

Γ − 1

KP

ρc2
(5.57)

calculated at constant entropy. The last equality is valid when a polytropic equation
of state P =K(Ψ )ρΓ is adopted. Projecting Eq. (5.56) onto a vector normal to the
poloidal magnetic field yields the relativistic Grad-Shafranov equation, whereas the
relativistic Bernoulli equation follows from (vφ/c)

2 + (vp/c)
2 + γ−2 = 1; see for

example Vlahakis (2004) and Lyubarsky (2009).
The condition of ideal MHD Eq. (5.14) takes exactly the same form in the rel-

ativistic regime. This condition amounts to demanding that in the rest frame of the
flow (denoted here with primes) Ohm’s law is J′/σ = E′, so that in the limit of very
large conductivity E′ = 0. The components of the fields parallel to v do not change
between reference frames, E// = E′// = 0. For the perpendicular components we
must demand that E′⊥ = γ (E⊥ + (v/c)× B)= 0. Then E+ (v/c)× B= 0 also in
the relativistic limit.
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As in the non-relativistic case, the condition of axial symmetry allows to write
the fields in terms of the flux function Ψ ,

Bp = 1

r
∇Ψ × φ̂, (5.58)

E=−Ω
c
∇ψ, (5.59)

where, again, Ω(Ψ ) is the angular velocity of the magnetic field lines. It defines,
for each field line, the radius of the light cylinder RL = c/Ω , where the velocity of
the lines equals the speed of light. This is a relevant length scale in relativistic jets.
Notice that in terms of RL the absolute value of the electric field is

E = r

RL
Bp, (5.60)

so for r > RL the electric field becomes larger than the poloidal magnetic field. The
velocity of the plasma is related to the magnetic field through Ω and the mass-load
function η(Ψ ) as

u= γ rΩφ̂ + η
ρ

B. (5.61)

Besides η, Ω , and K , the other two conserved quantities along poloidal magnetic
field lines are the angular momentum L(Ψ ) and the energy Ẽ(Ψ ). The expressions
in the relativistic regime are

L(Ψ )= γ ξrvφ − rBφ
4πη

, (5.62)

Ẽ(Ψ )= γ ξ
(
c2 − GMBH√

r2 + z2

)
− rΩBφ

4πη
. (5.63)

Notice that Ẽ now has a contribution from the rest-mass energy.
It is useful to define from these another constant of motion as

μ(Ψ )≡ F
Fm
. (5.64)

Here Fm = ρc2up is the poloidal rest-mass energy flux and F is the total poloidal
energy flux (sum of the kinetic, rest-mass, Poynting, thermal, and gravitational en-
ergy fluxes). Far away from the gravitating center, and in the case of a cold plasma
for which the thermal energy can be neglected,

μ(Ψ )≈ Fk +Fm +FS
Fm

= γ (σ + 1), (5.65)
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where FS = (c/4π)EBφ is the Poynting flux, Fk = (γ − 1)ρc2up is the kinetic
energy flux, and we have defined the magnetization parameter

σ ≡ FS
Fk +Fm

. (5.66)

The magnetization is not constant on field lines. In fact, if the outflow accelerates
by conversion of electromagnetic to kinetic energy, we expect σ to decrease with
the distance to the compact object. If the conversion were perfectly efficient, then
asymptotically σ ≈ 0. From Eq. (5.65), then, we immediately obtain that the maxi-
mum Lorentz factor the flow can achieve on a field line is γmax = μ.

Having defined the relevant variables, we now discuss the most important results
on the asymptotic acceleration and collimation of relativistic jets. As we shall see,
the efficiency of the acceleration of the flow is closely related to the shape (i.e. the
degree of collimation) of the poloidal field lines.

In the region r � RL and for γ � 1, the velocity of the outflow is approxi-
mately given by the value of the drift velocity in a crossed electromagnetic field
(e.g. Tchekhovskoy et al. 2008)

v ≈ vdr = c |E×B|
B2

. (5.67)

The corresponding Lorentz factor is

γ 2 ≈ γ 2
dr =

B2

B2 −E2
(5.68)

or, equivalently,
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+ B

2
φ −E2

B2
. (5.69)

The component of the velocity along the magnetic field is negligible and does not
contribute significantly to γ .

From Eqs. (5.60) and (5.68) we may obtain an estimation of the value of the
toroidal magnetic field in the limit r�RL and γ � 1,

Bφ ≈ γE√
γ 2 − 1

≈ Bp

(
r

RL

)(
1+ 1

2γ 2

)
. (5.70)

Thus we get that B2/B2
p ≈ 1+ (r/RL)

2 ≈ (r/RL)
2. The second term in Eq. (5.69)

is related the curvature of the field lines,

(
B2

B2
φ −E2

)1/2

≈ C
(
Rc

r

)1/2

, (5.71)

where C is a constant of the order of unity. Its exact value depends on the details of
the geometry of the field lines; for a highly collimated flow with Ω = constant, for
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example, C = √3 (Tchekhovskoy et al. 2008). We may then write Eq. (5.69) in a
convenient form as

1

γ 2
≡ 1

γ 2
1

+ 1

γ 2
2

≈ R
2
L

r2
+ r

C2Rc
. (5.72)

The Lorentz factor at a point will be effectively determined by the smallest among
the values of γ1 and γ2.

Whether γ ∝ γ1 or γ ∝ γ2 depends on which terms asymptotically dominate the
force balance in the Grad-Shafranov equation; a detailed discussion on this point
is presented in Komissarov et al. (2009). The linear or first acceleration regime
γ ∝ γ1 ∝ r corresponds to a situation where the balance between the centrifugal
and the electromagnetic force keeps the outflow in equilibrium. When the curva-
ture of the field lines becomes important, the magnetic tension dominates over the
centrifugal force and the equilibrium is maintained only by electromagnetic forces.
This second acceleration regime is characterized by γ ∝ γ2.

To obtain an expression for the Lorentz factor we need to find out the dependence
of γ2 on r . For a given curve z(r) the curvature radius is given by

Rc = (ż
2 + 1)3/2

z̈
, (5.73)

where the dots denote the derivative with respect to r . Assume that the poloidal field
lines may be parameterized as z(r)∝ rk with k > 1. Sufficiently far from the com-
pact object ż� 1, so that Rc ∝ r2k−1 and γ2 ∝ rk−1. If k = 2 (parabolic field lines)
we get that γ ∝ r . If 1< k < 2 the flow is poorly collimated (less than parabolically)
and γ ∼ γ2 ∝ rk−1. Finally, if k > 2 (well collimated flow) the curvature of the field
lines is very small (i.e. Rc is very large) and γ ∼ γ1 ∝ r . The case of a conical out-
flow with k = 1 must be analyzed separately; the result is that, asymptotically, γ (r)
grows only logarithmically (e.g. Beskin et al. 2008).

We know, however, that the outflow cannot accelerate forever: the Lorentz factor
has a maximum possible value γmax = μ along each field line. How close can γ get
to this maximum? In other words, is the conversion of magnetic into kinetic energy
efficient? Again, this is related to the collimation of the jet as we now show.

Let us go back to the definition of μ(Ψ ) in Eq. (5.65)

μ= γ − ΩrBφBp

4πc2ρup
. (5.74)

We can use the asymptotic expression in Eq. (5.70) to eliminate the toroidal mag-
netic field, and the definition of η in Eq. (5.61) to eliminate ρup. This gives

μ≈ γ − Ω
2r2Bp

4πc3η
. (5.75)

Since μ, Ω , and η are constant on field lines, the evolution of the Lorentz factor
depends on that of the product r2Bp: a decrease in the value of this quantity results
in an increase in the value of γ .
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Consider now an annulus of width δr between two magnetic surfaces Ψ and
Ψ + δΨ on a cross section of the jet at constant z as seen in Fig. 5.1. The poloidal
magnetic flux through this annulus is δΨ ∝ Bprδr , then

r2Bp ∝
(
r

δr

)
δψ. (5.76)

For r2Bp to decrease we must demand that r/δr decreases too. This means that
the outflow accelerates as long as the radial separation δr between two neighbor-
ing poloidal magnetic field lines increases faster than r . Such condition is usually
referred to as differential collimation or bunching of field lines.

The terminal value of the Lorentz factor γ∞ can be calculated analytically in
very few cases. If the poloidal field is assumed to be a split monopole Bp ∝ 1/r2,
from Eq. (5.75) we get that γ is constant and there is no acceleration at all. Equa-
tion (5.75) is, however, only approximate. As shown by Michel (1969; see also
Beskin et al. 2008 and Tchekhovskoy et al. 2009), the outflow actually does accel-
erate reaching an asymptotic Lorentz factor γ∞ ∝ μ1/3 � μ and a magnetization
σ∞ ∝ μ2/3 � 1. Since the magnetization remains large the jet is asymptotically
magnetically dominated, so the acceleration in an exact split magnetic monopole
field is highly inefficient. Remember, nevertheless, that a parameterization of the
magnetic field strength prescribed in advance does not satisfy the force balance
equation, so the results obtained with such models may be misleading. We shall see
that high acceleration efficiencies have been obtained in self-consistent numerical
simulations of MHD jets.

The reason why the acceleration of the outflow ultimately stops is that the forces
exerted by the magnetic and the electric field almost cancel each other. An argu-
ment based on the loss of causality can be formulated to understand why this is
related to the collimation of the flow (e.g. Komissarov et al. 2009; Tchekhovskoy
et al. 2009). To maintain the required differential collimation the field lines must be
able to “communicate” with each other across the jet. Consider the emission of fast
magnetosonic waves from a point in the jet. In the comoving reference frame the
waves are emitted isotropically, but in the lab frame the propagation is restricted to
a cone with an opening half-angle

sin θFM = γFMvFM

γ v
(5.77)

in the local direction of motion of the flow. Here vFM and γFM are the fast magne-
tosonic speed and the corresponding Lorentz factor, respectively. An efficient dif-
ferential collimation is possible only if the flow can communicate with the jet axis,
so the inclination angle of the field lines must satisfy

sin θ ≤ sin θFM. (5.78)

The locus of all points where sin θ = sin θFM defines a “causality surface” beyond
which efficient acceleration stops.
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We can estimate how efficient the acceleration of the flow is from Eq. (5.78). The
phase velocity of the fast magnetosonic waves for a cold flow (as ∼ 0) is

v2
FM

c2
= B ′2

B ′2 + 4πρc2
, (5.79)

where B ′ is value of the magnetic field in the rest frame of the jet. Then

γ 2
FM
v2

FM

c2
= B ′2

4πρc2
. (5.80)

The magnetic field in the comoving frame is related to the fields in the lab frame as
B ′2 = B2 −E2. For r � RL, applying Eq. (5.68) and using that Bp � Bφ ∼ E we
get

γ 2
FM
v2

FM

c2
≈ EBφ

4πγ 2ρc2
. (5.81)

Recalling the expressions for the Poynting, rest-mass, and kinetic energy flux, for
vp ∼ c we can write

γ 2
FM
v2

FM

c2
≈ FS

Fk +Fm
= μ
γ
− 1. (5.82)

Back to Eq. (5.78), we finally obtain the desired relation between the Lorentz factor
and the inclination angle of the poloidal field lines,

sin θ2 ≤ sin θ2
FM ≈

(
μ

γ
− 1

)(
1

γ 2 − 1

)
≈ μ

γ 3
. (5.83)

But μ= γmax, so

γ �
(
γmax

sin2 θ

)1/3

. (5.84)

As we had previously found, poorly collimated flows are inefficient accelerators: for
γmax � 1, the maximum possible value of the Lorentz factor is γ � γ 1/3

max � γmax.
The question is, then, if relativistic jets can collimate enough as to develop very

large Lorentz factors. The shape of the magnetic surfaces is dictated by the solu-
tion of the Grad-Shafranov equation for the force balance across the poloidal field
lines. It turns out that the necessary degree of collimation may be achieved as the
combined effect of self-collimation and the pressure exerted by an external medium
(Tchekhovskoy et al. 2008; Lyubarsky 2009; Komissarov et al. 2009). Not any arbi-
trary external pressure profile, however, is appropriate. If Pext ∝ z−α with α < 2, the
shape of the field lines is z∝ r4/α and from the discussion above we see that the jet
accelerates with γ ∝ r . For α = 2 a profile z ∝ ra with 1< a ≤ 2 is obtained, that
corresponds to a poor collimation and inefficient acceleration. Finally, for α > 2,
the external pressure drops too fast and the jet eventually becomes conical and stops
accelerating.
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5.5 The Blandford-Znajek Mechanism

A Kerr black hole of mass M and spin parameter a∗ has an amount of energy (its
reducible mass)

Erot =Mc2
(

1−
√
c2rh

2GM

)
=Mc2

{
1−

√
1

2

[
1+ (

1− a2∗
)1/2]} (5.85)

that is available to be extracted. This energy is potentially large: for a maximally
rotating hole (a∗ = 1) it equals ∼ 0.3Mc2. We have already commented in Chap. 2
on the Penrose process, one possible mechanism of tapping rotational energy from
black holes. The conditions that would allow efficient extraction of energy by the
Penrose process, however, are not expected to be fulfilled in the environments of
astrophysical black holes (Bardeen et al. 1972; Bejger et al. 2012).

If the black hole is immersed in a magnetosphere, rotational energy may be trans-
ferred to the electromagnetic field and escape to infinity as a Poynting flux. This
process is a specially interesting candidate to explain the formation of astrophysical
jets. It was studied in a seminal paper by Blandford and Znajek (1977), and the name
“Blandford-Znajek mechanism” is nowadays broadly used to refer to any process of
extraction of rotational energy from a black hole by means of an electromagnetic
field.

The original model of Blandford and Znajek is based on the works on pulsar
magnetospheres by Goldreich and Julian (1969) and on electrodynamics in Kerr
space-time by Wald (1974). Blandford and Znajek (1977) considered a Kerr black
hole in a magnetic field generated by currents flowing in an equatorial accretion
disk. They assumed that the magnetosphere is force-free: the inertia of matter is
completely neglected everywhere outside the disk, but the charge density is large
enough to screen the component of the electric field parallel to the magnetic field.
The charges, in the form of electron-positron pairs, would be introduced in the mag-
netosphere by annihilation of photons radiated by any accelerated seed particles.

In covariant notation the force-free condition reads

JμF
μν = 0, (5.86)

where Fμν is the electromagnetic field tensor defined in Eq. (2.87) in terms of the
four-potential Aμ, and the current Jμ satisfies the inhomogeneous Maxwell equa-
tions

F
μν

;ν =
4π

c
Jμ. (5.87)

Blandford and Znajek (1977) looked for a solution of Eqs. (5.86) and (5.87) in
Kerr space-time using Boyer-Lindquist coordinates (recall Eqs. (2.55)), demanding
it to be stationary and axisymmetric (∂t = ∂φ = 0). In analogy to the formalism
developed in the previous sections, there exists a flux function Ψ with the property
that the surfaces Ψ = constant are magnetic surfaces. It turns out that Ψ = Aφ is a
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possible choice. An equation for Aφ may be written down in terms of the metric and
the functions

−ω≡ At,r

Aφ,r
= At,θ

Aφ,θ
(5.88)

and

BT ≡ Δ

Σ
sin θBφ. (5.89)

Both ω and BT are constant along field lines, and thus only depend on Aφ . The
scalar electrostatic potential At is also constant on field lines, hence Eq. (5.88) is
equivalent to the function Ω = dχ/dΨ we introduced before. This is why ω is
generally referred to as the angular velocity of the field lines.

To complete the formulation of the problem, Blandford and Znajek (1977) im-
posed boundary conditions at infinity and on the horizon. At infinity, they forced
the fields to match known solutions valid in flat space-time. At the horizon (r = rh),
they demanded that the electromagnetic field remained finite as seen by an observer
crossing the horizon in free-fall. It was shown by Znajek (1977) that to satisfy the
latter condition Aφ(rh, θ) must be finite and

BT(rh, θ)= 2rh(ω−ΩH)

r2
h + (a2/c2) cos2 θ

sin θAφ,θ (rh, θ), (5.90)

where

ΩH ≡ a

r2
h + a2/c2

(5.91)

is called the angular velocity of the black hole.6

Calculating the general solution for Aφ is highly difficult, and the result found by
Blandford and Znajek (1977) is a perturbative solution. They considered an unper-
turbed magnetic field configuration (monopole or paraboloidal) in Schwarzschild
space time and, on it, they built the solution for a slowly rotating Kerr black hole as
an expansion in the spin parameter a∗ � 1.

The most important prediction of the Blandford-Znajek model regards the flux
of electromagnetic energy from the black hole. Under the force-free approximation
there is no contribution of matter to the energy-momentum tensor. The equations for
the conservation of energy and momentum then reduce to

E
μν

;ν = 0 (5.92)

where

Eμν = c

4π

(
−FμρF νρ +

1

4
gμνFσλFσλ

)
(5.93)

6Notice that it equals dφ/dt in Eq. (2.59) evaluated at the horizon.
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is the energy-momentum tensor of the electromagnetic field, recall Sect. 2.6.1. Let
ξμ be a Killing vector, then from Eqs. (1.21) and (5.92) we get

(
ξμE

μν
)
;ν = 0. (5.94)

Since the metric is stationary ξμ = (1,0,0,0) is a time-like Killing vector in
Boyer-Lindquist coordinates. Then from Eq. (5.94) we obtain that the four vector
Eν =Eνt is conserved; we identify this quantity with the electromagnetic energy flux
measured by a stationary observer at infinity.7

The radial component evaluated at the event horizon is

E r (rh, θ)= ω(ΩH −ω)
(
Br

)2
rh sin2 θ. (5.95)

An observer at infinity will report an outgoing flux of electromagnetic energy from
the black hole (E r ≥ 0) if 0≤ ω ≤ΩH. Notice that in deducing Eq. (5.95), Blandford
and Znajek (1977) applied Eq. (5.90). We shall say more about the meaning of
this condition below. The total radial energy flow observed at infinity is obtained
integrating Eq. (5.95),

L= 2π
∫ π

0

√−gE rdθ. (5.96)

To rigorously calculate the value of the electromagnetic energy flux we must
supply an expression for ω and solve Maxwell’s equations to find Br . But if we are
just interested in obtaining a quick order-of-magnitude estimate, we can still write
down an approximate expression for L. Assume ΩH = constant and a monopole
magnetic field Bn = Br sin θ = constant. Integration of Eq. (5.96) then yields (Lee
et al. 2000, see also Beskin 2010)

L= G
2

c3
f (x)

ω(ΩH −ω)
Ω2

H

B2
nM

2a2∗, (5.97)

where x = a/crh,

f (x)= 1+ x2

x2

[(
x + 1

x

)
arctanx − 1

]
, (5.98)

and f ∼ 1 in the allowed range 0≤ x ≤ 1. If we further take ω=ΩH/28 we obtain

L≈ 1046
(
Bn

104 G

)2(
M

109M�

)2

a2∗ erg s−1. (5.99)

7Analogous considerations show that the flux of electromagnetic angular momentum Lμ =−Eμφ
is also conserved.
8This is the value of ω calculated by Blandford and Znajek (1977) to first order in a∗ in the
perturbed split monopole solution.
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This is a very interesting result: it shows that the rate of energy extraction through
the Blandford-Znajek mechanism is, in theory, enough to account for the observed
power of jets in AGN.

The initial work of Blandford and Znajek (1977) triggered an enormous amount
of research, but it has been as well subject to strong criticism. From the results of re-
cent theoretical and numerical work, however, it became apparent that the confusion
and controversy arose mainly from the incorrect role ascribed to the event horizon.

The boundary condition at the horizon, Eq. (5.90), seems to be a fundamen-
tal piece in the formulation of Blandford and Znajek (1977). This contributed to
put forward an analogy that could, supposedly, help to understand more easily
how the Blandford-Znajek process works. In the Membrane Paradigm (Thorne
et al. 1986) the event horizon (strictly a surface infinitesimally outside it, the so-
called stretched horizon) is replaced by a rotating conductor of surface resistivity
RH = 4π/c ≈ 377 Ohm, plus other well-defined electrical, mechanical, and ther-
modynamical properties. The problem is then formulated in terms of the classical
laws of physics without the need to resort to general relativistic electromagnetism.

In the Membrane Paradigm the stretched horizon behaves just as an unipolar
inductor like the famous Faraday disk. The Lorentz force acting on (fictitious) free
charges on the stretched horizon induces charge separation; this in turn generates
an electric field and poloidal currents. It is also the rotation of the conductor at the
stretched horizon that drives the rotation of the magnetic field lines. A model like
this does, in fact, very well explain the energy loss of pulsars (see Beskin 2010 for an
introduction to pulsar magnetospheres) and other magnetized rotating objects with
a material surface.

Much of the criticism made about the Blandford-Znajek process comes from
its strong (and erroneous) association with the Membrane Paradigm. One of such
claims was formulated by Punsly and Coronity (1990a, 1990b, see also Punsly
2001) and is related to causality. Their argument goes, qualitatively, like this. The
Blandford-Znajek solution describes, actually, two flows: an outflow towards infin-
ity and an inflow towards the event horizon. Each flow has its own critical surfaces
where it reaches each of the characteristic speeds of MHD winds. It turns out that the
ingoing wind has to cross all its critical surfaces before reaching the horizon (Taka-
hashi et al. 1990; Komissarov 2004). On arriving to the horizon, then, the inflow is
already causally disconnected from the outgoing wind. Nothing that occurs at the
horizon can affect the outflow at infinity, hence the horizon cannot be an unipolar
inductor. Any condition like Eq. (5.90) imposed at the horizon lacks sense. Punsly
and Coronity concluded that the solution of Blandford and Znajek (1977) must be
unstable (no real system could evolve to such steady-state configuration) and there-
fore not physically meaningful. They argued that it should be a matter-dominated
plasma that creates the necessary electric field to drive the currents. If the electric
field were generated “in vacuum” it would be, according to them, screened by free
pairs created in the magnetosphere. Punsly and Coronity (1990a, 1990b) developed
a different model of magnetohydrodynamics in Kerr space-time that predicted en-
ergy extraction from rotating black holes.
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In a series of papers that combined numerical and analytical work, Komissarov
(2001, 2002, 2003, 2004, 2009, but see also McKinney 2006; McKinney and Gam-
mie 2004; Beskin and Kuznetsova 2000) addressed the issues raised against the
Blandford-Znajek mechanism. The results strongly suggest that none of them does
really undermine its validity.

The first fact to be noticed is that Znajek’s condition at the horizon is not re-
ally a boundary condition. From a physical point of view it just imposes a reason-
able demand, namely that a free-falling observer measures a finite electromagnetic
field. Blandford and Znajek (1977) had to impose it because they worked in Boyer-
Lindquist coordinates, but there is no need for it when a regular set of coordinates
is used (e.g. McKinney and Gammie 2004).9 Indeed, it can be seen that Znajek’s
condition is actually a regularity condition (e.g. Komissarov 2001). In the force-free
approximation the event horizon coincides with the fast surface of the ingoing flux;
demanding the solution to cross it smoothly yields Eq. (5.90).10 When the inertia of
matter is considered, the fast surface shifts outwards and no condition on the horizon
is required.

If the horizon is causally disconnected from the electromagnetic outflow, and
having relieved it of the apparently special role attributed to it by Znajek’s condi-
tion, a possible solution to the arguments against the Blandford-Znajek mechanism
suggests itself: it is not driven by the event horizon. The “engine” must be located
outside the horizon, and the natural candidate (if we think of the Penrose process)
is the ergosphere. This idea is supported by analytical results and simulations.

General relativistic, time-dependent, force-free simulations of magnetospheres
around Kerr black holes by Komissarov (2001, 2003, 2004) do predict an outgoing
Poynting flux. For an initial split monopole magnetic field, the system tends to a
steady state that matches very well the perturbative solution of Blandford and Znajek
(1977) for a∗ � 0.5. Furthermore, for all values of ω consistent with extraction of
electromagnetic energy from the hole, the Alfvén surface of the ingoing flow lies
inside the ergosphere (Komissarov 2002, 2003). There always exists, then, an outer
region of the ergosphere that is causally connected with the outflow. These results
indicate that the Blandford-Znajek solution is stable and causal.

Another interesting outcome of the simulations is that all field lines that thread
the ergosphere are forced into rotation with the black hole, no matter whether they
also cross the event horizon or not. This is in contradiction with the Membrane
Paradigm, according to which only those lines that cross the stretched horizon
should rotate.

Finally, let us comment on the last issue raised by Punsly and Coronity (1990a,
1990b) concerning the origin of the electric field. The electric field that drives
poloidal currents in pulsars is generated by the charge separation induced by the
rotation of the star. There is, however, no such need in a rotating black hole: even
in vacuum an electric field appears inside the ergosphere (e.g. Wald 1974). The

9An example of regular coordinates in Kerr space-time are Kerr-Schild coordinates.
10Also in the limit of force-free, degenerate MHD, fast waves propagate at the speed of light.
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important result is that this electric field cannot be completely screened by free
charges—no stationary solution with completely screened electric field and zero
poloidal currents is allowed inside the ergosphere (Komissarov 2004). The concept
of an unipolar inductor cannot be applied to black holes magnetospheres, and there
is no sense in looking for any surface that serves that purpose.

The weaknesses of the Blandford-Znajek mechanism pointed out by Punsly and
Coronity (1990a, 1990b) actually demonstrate a failure of the Membrane Paradigm.
Trying to build up an analogy between black hole and pulsar magnetospheres has
proved misleading. The phenomena that occur in the environments of a rotating
black hole are peculiar to these objects and depend fundamentally on the existence
of the ergosphere and the frame dragging effect. The Blandford-Znajek mechanism,
then, should be actually regarded as akin to a “Penrose-like” process. This inter-
pretation, that we just mention loosely here, may be developed formally, see for
example Komissarov (2009).

5.6 Numerical Simulations

Numerical simulations provide a way to explore regions of the parameter space for
which we have none or little prior analytical knowledge;11 well-established analyti-
cal results are useful, of course, to check the validity of the numerical codes. Simu-
lating “real” astrophysical jets is a great challenge. The values of the parameters that
characterize sources with jets (length, Lorentz factor and power of the outflow, mass
of the central object, and typical magnetic field strength, to name some) span many
orders of magnitude (see e.g. Levinson 2010 for some figures). Only in recent years
the simulations have become complex enough as to reproduce, with a good degree of
verisimilitude, the observed large-scale properties of astrophysical jets. Numerical
work has also widely contributed to our comprehension of the physics that govern
their evolution. Simultaneously we have significantly progressed in understanding
the microphysical processes that take place in jets, such as the origin of the radiation
they emit, how particles get accelerated in them, etc. The next natural step would be
to couple microscopic and macroscopic phenomena, but it is a difficult task and the
advances in that direction are still in their beginnings (see, however, Bosch-Ramon
et al. 2011; Huarte-Espinosa et al. 2011; Drappeau et al. 2011; Polko et al. 2013).

In this section we briefly review just a few of the latest numerical works on the
MHD theory of jets. The selection is mainly intended to illustrate the results dis-
cussed in the previous section, and thus largely incomplete. Many other contribu-
tions deserve to be mentioned as well, you can see for instance Koide et al. (2002),
Mizuno et al. (2004), McKinney and Narayan (2007), Romanova et al. (2009), Porth
and Fendt (2010), Barkov and Khangulyan (2012), Lii et al. (2012).

11The production of magnetized, supersonic jets of plasma in laboratory experiments is nowadays
possible. This could be yet another way to learn about astrophysical jets, as long as the experimen-
tal conditions in the laboratory can be correctly scaled. See the articles by Remington et al. (2006)
and Ciardi (2010) for reviews on this topic.
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One of the goals of numerical simulations is to reproduce the conditions derived
from observations in different astrophysical sources with relativistic outflows. The
Crab pulsar offers an interesting case.12 The pulsar wind is completely magnetically
dominated at launch but the magnetization drops to very low levels (σ∞ � 10−2)

in the terminal region (e.g. Kennel and Coroniti 1984). Classical models of pul-
sar winds rely on the split-monopole configuration as a good approximation to the
dipolar magnetic field far from the neutron star. We have seen, however, that the
efficiency of magnetic-to-kinetic energy conversion in a split-monopole magneto-
sphere is very poor. Can observation and theory be reconciled somehow? It appears,
indeed, that the wind eventually becomes matter-dominated in the polar region.

Tchekhovskoy et al. (2009) performed ideal MHD simulations of unconfined rel-
ativistic winds launched from a rotating star, following the evolution of the outflows
for 10 orders of magnitude in radius. The calculations are time-dependent with an
initial pure split-monopole magnetic field. Figure 5.5 shows the steady-state mag-
netic field distribution and Lorentz factor in two different simulation runs. Whereas
the field lines near the equator little differ from radial, they are much more colli-
mated near the axis. In the model in the left panel the maximum Lorentz factor is
∼40 but σ∞ � 1, implying a poor efficiency of energy conversion. In the model
in the right panel the density of the plasma at the launching region was lowered
near the axis to increase the value of μ, recall Eq. (5.74). Now the acceleration is
very efficient near the rotation axis: along these magnetic field lines σ∞ � 1 and
γmax ∼ 200. This region of the outflow may be identified with a relativistic jet. To-
wards the equator, on the contrary, the efficiency of acceleration is low. The results
can be readily understood applying the concepts of Sect. 5.4. Figure 5.6 shows the
evolution of μ, σ , and γ along single field lines. As expected, μ remains constant all
over and σ decreases as γ increases. The vertical dotted lines indicate the position
of the fast magnetosonic and causality surfaces. The acceleration efficiency is no-
toriously reduced after crossing the former and practically quenched after crossing
the latter.

There are two important conclusions to be drawn from these results. First, that
quasi-monopole magnetospheres can launch relativistic winds with good magnetic-
to-kinetic energy conversion efficiency near the axis. And, second, that there is no
need, a priori, for an external confining medium. A similar result was found by
Komissarov et al. (2009), namely that the field lines collimate near the axis and that
the Lorentz factor is higher in this region (although still moderate in their model)
than towards the equator.

In sources other than pulsars the jets propagate in a dense environment whose
influence cannot be ignored. Such is the situation in a collapsar—the most widely
accepted scenario for the origin of long gamma-ray bursts. In the collapsar model
the burst is driven by the collapse of a massive rotating star into a black hole. This is
accompanied by the formation of a transient (typically lasting less than 10 s) jet that
propagates through the stellar material as sketched in Fig. 5.7. Jets in GRBs (both

12This source hosts, of course, a neutron star and not a black hole.
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Fig. 5.5 Poloidal magnetic field lines (thin black lines) and Lorentz factor (color scale) in two
simulations of ideal MHD winds from a magnetized rotating star. The white lines in the outer part
of the figures show the initial (purely radial) magnetic field. From the star outwards, the thick black
lines mark the Alfvén, fast magnetosonic, and causality surfaces, respectively. From Tchekhovskoy
et al. (2009). Reproduced by permission of the AAS

long and short) are, perhaps, the most challenging when it comes to simulations: one
seeks to simulate outflows with Lorentz factors up to∼103 with an energy output of
∼1051 erg, that keep very well collimated (opening angles of a few degrees) while
propagating in the dense material of a collapsing star (e.g. Mészáros 2002; Piran
2004).

Tchekhovskoy et al. (2008) considered a simplified model of jet-launching
source formed by a rotating black hole and an infinitesimally thin disk around it. The
hole rotates with angular velocity Ω0 =ΩH(a∗ = 1)/2 whereas the disk is Keple-
rian withΩd =Ω0r

−3/2. Field lines thread both components; their angular velocity
Ω is determined by the angular velocity of the object to which they are anchored
at the footpoint. The jet is identified with those lines that thread the black hole; the
field lines that thread the disk launch a wind that supplies the external pressure to
the jet. The jets are expected to be highly magnetized (B ∼ 1015 G) and relativistic,
so the (time-dependent) simulations are carried out in the force-free, ideal MHD
approximation in flat space-time.

Figure 5.8 shows the result of a simulation. The jet accelerates up to a Lorentz
factor of ∼103. Depending on the values of the model parameters, the maximum
value of γ is attained between the jet axis and its boundary (as in the case of
this figure) or at the boundary itself. The total energy carried by the jet is typi-
cally ∼1051–1052 erg, in agreement with the energetics inferred for long GRBs.
The jet opening angle at the surface of the star predicted by the simulations is
θj ∼ 10−3–10−1, also consistent with observations.
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Fig. 5.6 Variation with
distance along a field line of
some relevant parameters in
the models of Fig. 5.5. Top:
μ, σ , γ . Bottom: inverse of
the fast Mach number
Mf = γ v/γFMvFM (solid line)
and inclination angle θj of the
field line (dashed line). The
values of θj at the footpoint
are 90◦ (top panels) and ∼ 6◦
(bottom panels). The position
of the fast and causality
surfaces are indicated with F
and C, respectively. For the
equatorial field line they both
coincide. From
Tchekhovskoy et al. (2009).
Reproduced by permission of
the AAS

There is yet another characteristic of GRBs that simulations should comply with:
observations imply that the Lorentz factor and the opening angle of the jet satisfy
γ θj ∼ 10–30. Confined relativistic MHD jets, however, have γ θj � 1 (Komissarov
et al. 2009; Lyubarsky 2009). Unconfined jets may reach larger values, but we have
already seen that such outflows eventually become conical and practically cease to
accelerate. Then, if the jet leaves the star before accelerating enough it may not
afterwards achieve (at least on any reasonable length scale) a value of γ comparable
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Fig. 5.7 Sketch of a collapsar. A magnetized, relativistic jet makes its way through the collapsing
star, that provides a confining medium. From Tchekhovskoy et al. (2008). Reproduced by permis-
sion of Oxford University Press on behalf of the Royal Astronomical Society

Fig. 5.8 Lorentz factor of the
outflow as a function of
position in a simulation by
Tchekhovskoy et al. (2008).
The thin solid lines represent
the magnetic field lines, the
thick solid line the Alfvén
surface, and the dashed line
marks the boundary between
the jet and the wind from the
disk. From Tchekhovskoy
et al. (2008). Reproduced by
permission of Oxford
University Press on behalf of
the Royal Astronomical
Society

to those observed. But in a collapsar the jet switches from confined to unconfined
when crossing the surface of the star. Exactly this peculiarity seems to be the key to
the solution of the problem.

Simulations by Komissarov et al. (2010; see Fig. 5.9) and Tchekhovskoy et al.
(2010b) show that in the confined-unconfined transition the outflow’s bulk velocity
is suddenly boosted, whereas the opening angle only slightly increases and after-
wards remains constant. The result are values of γ θj � 10 as pursued. Komissarov
et al. (2010) suggested an explanation for this effect: when the outflow becomes
unconfined, a fast magnetosonic rarefaction wave propagates from the jet boundary
to the axis producing a drop in magnetic pressure. The passage of the wave across
the jet results in differential collimation of the field lines precisely in the manner re-
quired for the flow to accelerate. Notice that acceleration of confined jets by differ-
ential collimation can operate for very large length scales, whereas the collimation
associated to the rarefaction wave ceases as soon as the wave has reached the axis;
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Fig. 5.9 Simulations of a jet
permanently confined by a
rigid wall (top) and one that
gets suddenly unconfined
(bottom), both initialized with
the same set of parameters.
The lines represent the
magnetic field lines and the
color code the Lorentz factor.
The latter achieves its
maximum allowed value,
γmax = μ, in the boundary of
the unconfined jet. The
conversion of magnetic to
kinetic energy in the confined
jet is substantially more
inefficient. The red area in
the plot for the unconfined jet
is vacuum. From Komissarov
et al. (2010). Reproduced by
permission of Oxford
University Press on behalf of
the Royal Astronomical
Society

any further acceleration (at least related to collimation) is negligible. At that stage,
however, the unconfined jet has already achieved a low magnetization σ � 1.

The central engine of a long gamma-ray burst is also an interesting scenario
to test the efficiency of the Blandford-Znajek mechanism to launch powerful ultra
relativistic jets. Figure 5.10 shows a snapshot of the core of a collapsar according to
a 2D general relativistic MHD simulation by Barkov and Komissarov (2008). A pair
of jets are launched from the surroundings of a black hole of mass MBH = 3M�
and spin parameter a∗ = 0.9, where the magnetic field reaches a huge strength of
∼1015 G. About 80 % of the energy carried by the jet is tapped from the black hole
at a rate of 1051 erg s−1. The value of the electromagnetic energy flux is consistent
with the prediction of the Blandford-Znajek model.



190 5 Jets

Fig. 5.10 Snapshots of the surroundings of the black hole in a collapsar at different spatial scales.
The colors indicate the rest mass density, the solid contours the magnetic field lines, and the arrows
the velocity field. Lengths are measured in units of the gravitational radius rg =GMBH/c

2. Two
Poynting-dominated jets are clearly observed. Notice as well that there is a region where the direc-
tion of the wind changes from inwards (towards the black hole) to outwards (away from the black
hole). From Barkov and Komissarov (2008). Reproduced by permission of Oxford University Press
on behalf of the Royal Astronomical Society

5.7 Are Astrophysical Jets Disk-Driven or Black Hole-Driven?

The exact mechanism by which astrophysical jets are launched is unknown. The two
strongest suspects are those we studied in this chapter, namely the magnetohydro-
dynamic or Blandford-Payne process (disk-driven jets) and the Blandford-Znajek
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process (black hole-driven jets); the quest for evidence favoring one or another is
ongoing. The properties of putative black hole-driven jets are expected to depend on
spin. Searching for correlations between spin and some other observational param-
eter should be a way to find out if the Blandford-Znajek process is at least partially
involved in the launching of the outflows. Unluckily this is not so easy to do at
present, mainly because accurately measuring the spin of astrophysical black holes
is difficult. Two methods are usually employed (e.g. McClintock et al. 2011). One
consists in fitting the spectrum of the accretion disk to the relativistic model of
Novikov and Thorne (1973). In the second method the profile of the Fe Kα line at
∼6.4 keV is fitted as well. This fluorescence line is emitted in the inner disk and
its shape is distorted by gravitational effects, thus providing information about the
black hole spin.

The classical example of a phenomenon blamed on black hole spin is the “radio
loud/radio quiet dichotomy” observed in AGN. The ratio Lradio/Lopt of radio-to-
optical luminosity is∼103–104 times larger in radio loud than in radio quiet sources,
when compared at constant Lopt (Sikora et al. 2007). Since the radio emission is
thought to originate in the jets, the dichotomy reveals that jets in radio loud AGN
are much more powerful. One possible explanation for this is that the outflows are
driven by some variation of the Blandford-Znajek mechanism, and jets in radio loud
AGN are more powerful because the central black holes have larger values of spin.
This model is known as the spin paradigm (e.g. Blandford 1990; Sikora et al. 2007).

The quadratic dependence of the power outflux on a∗ predicted by Blandford and
Znajek (1977), recall Eq. (5.99), is too weak to explain the disparity in Lradio/Lopt
between radio loud and radio quite AGN, at least without requiring a very large
difference in the value of spin between the two populations. The Blandford-Znajek
formula is, however, a first order approximation. Refinements of the same model
yield a steeper dependence of the power output on a∗ and ΩH. Tchekhovskoy et
al. (2010a, see also references therein) showed analytically and through simulations
that the steepening is enhanced when the accretion flow surrounding the black hole
is geometrically thick, i.e. H/R � 1, like in an ADAF or a thick accretion disk.
Their results are nicely summarized in Fig. 5.11. It is possible to obtain a scaling as
steep as L ∝Ω4

H or even ∝Ω6
H. In this scenario a plausible variation in spin from

a∗ ∼ 0.15 to a∗ ∼ 1 between radio quiet and radio loud sources would be sufficient
to account for the dichotomy.

Still other effects may influence the energy output from a spinning black hole.
Two of them are the configuration of the magnetosphere and the sense of rotation
of the black hole with respect to the accretion disk. A short discussion on this is
given by Meier (2011, and references therein). An open magnetosphere connects
the black hole with infinity, whereas in a closed magnetosphere the magnetic field
lines bend towards the disk. Hence it is expected that open magnetospheres produce
Poynting jets more easily. A closed magnetosphere, nevertheless, may turn into an
open one if there is enough shear between the disk and the rotating black hole. The
strongest shear develops in systems with retrograde black holes (those that rotate in
opposite sense with respect to the disk) and in rapidly spinning (0.75< a∗ < 0.99)
prograde black holes (that rotate in the same sense as the disk). Retrograde black
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Fig. 5.11 Power output as a function of the angular velocity of the black hole for different height–
to-radius ratios of the accretion flow. The symbols indicate the results of numerical simulations,
whereas the lines are analytic approximations up to different orders in a∗ and ΩH. The one la-
beled “BZ2” corresponds to the original result of Blandford and Znajek (1977). Notice that the
dependence of power on spin steepens as ΩH → 1 (i.e. a∗ → 1) for thick accretion flows. From
Tchekhovskoy et al. (2010a). Reproduced by permission of the AAS

holes should be then more likely to launch Blandford-Znajek jets. But, in addition,
there is the prediction that jets from retrograde black holes are 10–100 times more
powerful (Garofalo 2009; Garofalo et al. 2010). This result is basically founded on
the “gap” model by Reynolds et al. (2006), in which the magnetic flux plunges into
the black hole at the ISCO and is trapped by the hole. Retrograde black holes accrete
the large-scale magnetic field of the disk more efficiently because the radius of the
ISCO is larger. The combination of all these factors naturally leads to an asymmetry
between the properties of jets from retrograde and prograde black holes, these being
more powerful and more likely to occur in the former.

Recent 3D time-dependent simulations by Tchekhovskoy and McKinney (2012)
have challenged to some extent this modified version of the spin paradigm. They
considered a black hole of spin a∗ = ±0.9 surrounded by a torus of inner radius
rin = 15rgrav and typical scale height H/r ∼ 0.3–0.6. After the simulations con-
verge to the steady state it is observed that the energy extraction from system with
the prograde black hole is more efficient than that from the retrograde black hole.
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In both cases the efficiency grows as the disk thickness increases.13 Furthermore,
∼80 % of the energy outflow is carried by a Blandford-Znajek-powered jet (it scales
quadratically with the magnetic flux on the event horizon) and the rest by a disk-
powered wind. The results are independent of the disk inner radius and the initial
magnetic flux of the accretion flow, and show no evident formation of a magnetic
flux-free gap around the black hole. The gap model, however, strictly applies to
thin disks with weak magnetic fields, conditions that are different from the setup of
Tchekhovskoy and McKinney (2012).

Regarding specifically the launching of jets in X-ray binaries (XRBs) two recent
studies have led to opposite conclusions. Before describing the results it is timely
to notice that black hole XRBs show two types of outflows: continuous jets and
discrete ejections. Continuous jets are detected during the so-called “low-hard” X-
ray state (we shall say more about the spectral states of XRBs in the next chapter).
These are steady, mildly relativistic outflows extending for �10 AU in length. Dis-
crete jets (or blobs) are transient ejections of plasma that propagate for distances of
parsecs at relativistic speeds. They are observed during transitions between spectral
states, a period also characterized by a climb in the system’s luminosity up to near
the Eddington value.

Fender et al. (2010) considered a sample of ∼15 XRBs with reported values of
the black hole spin. They searched for correlations between spin and jet power (both
for continuous and discrete outflows) or jet bulk speed (in the case of discrete ejec-
tions). They found none, expect for a dubious link between the power of transient
jets and spin but only in those sources where the spin was calculated by the Fe Kα
line method. To estimate the total jet power Ljet these authors relied on empirical
laws linking it to the radio and X-ray luminosities (e.g. Gallo et al. 2003; Merloni
et al. 2003).

Narayan and McClintock (2012), on the other hand, analyzed data from only
four sources with transient outflows. They adopted the peak radio luminosity at
5 GHz as a proxy for the jet power. This value was found to increase with the spin
parameter as Ljet ∝ a2∗ , in agreement with the result of Blandford and Znajek (1977)
for slowly rotating black holes. Moreover, a correlation with the angular velocity of
black hole of the form Ljet ∝Ω2

H was also discovered. This scaling was suggested
by Tchekhovskoy et al. (2010) and McKinney (2005) to be valid for values of a∗
close to unity.

Narayan and McClintock (2012) argue that their results prove that the Blandford-
Znajek process is most probably responsible for powering transient jets in XRBs.
This affirmation is additionally supported by the fact that the values of a∗, Ljet, and
ΩH used to fit the correlations span orders of magnitude. The differences with the
results of Fender et al. (2010) might be due to them choosing a less adequate proxy

13Simulations in 2D by Fragile et al. (2012) showed no correlation between the disk thickness
and the jet power. These simulations probe a different regime than those by Tchekhovskoy and
McKinney (2012), since the authors consider disks subject to cooling with 0.04 �H/r � 0.16 and
a flow not dominated by magnetic pressure. As a conclusion, they suggest that it is the corona and
not the disk wind that provides confinement to the jet.
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for the jet power. As to continuous jets, the independence of Ljet on the spin may be
reasonably explained: these outflows are expected to be launched far from the black
hole (�50rg) where relativistic effects are already negligible.

In any case, both the works of Fender et al. (2010) and Narayan and McClintock
(2012) are based on data from a few sources for which there exist estimates (some
very uncertain) of the black hole spin. The results, although definitely very exciting,
must be better interpreted with caution and not taken as definite for the moment.

There is currently no concluding answer, then, for the question of what drives
astrophysical relativistic jets. In view of the results we have gathered here it appears
that both electromagnetic field and matter are fundamental pieces in the process.
The most likely scenario is, perhaps, that both Blandford-Znajek and Blandford-
Payne mechanisms are to some degree responsible for powering jets, one or another
being relevant possibly at different spatial scales.

5.8 More on Jet Dynamics

We have seen that the “standard” axisymmetric, non-dissipative magnetohydrody-
namic model provides a complete description of the process of launching, acceler-
ation, and collimation of jets. To work efficiently, however, it relies on a number
of factors that include the presence of a large-scale magnetic field and an exter-
nal medium with particular properties. Up to what extent these quite finely-tuned
conditions are met in real astrophysical sources we do not know.

There is yet another particularly troublesome issue with the standard model. One
of its central predictions (although we have seen some ways to circumvent it) is
a low efficiency of magnetic-to-kinetic energy conversion—far from the launching
region relativistic jets still carry a large fraction of their energy as electromagnetic
energy. It is also known that magnetized flows, say with σ � 0.1, are not favorable
environments for efficient conversion of kinetic energy into thermal energy at shocks
(e.g. Mimica and Aloy 2010). The detection of non-thermal radiation from relativis-
tic jets, on the other hand, allows to infer that these are populated with particles ac-
celerated to very high energies. It is in this point that theory and observation clash:
the mechanism of particle acceleration generally assumed to be the most relevant
(first order Fermi-like acceleration, e.g. Drury 1983) involves precisely diffusion
across shock fronts.14

There are alternative models that partially overcome these problematic features.
Below we shortly examine two of them: magnetic towers and impulsive acceler-
ation. Like the standard model both have the magnetic field as the fundamental
ingredient. We shall not discuss hydrodynamic jets. Let us just mention that the hy-
drodynamic acceleration of outflows is a very robust mechanism without some of

14The reason is that shock waves are commonplace in a variety of astrophysical sources. Besides
the first order Fermi process other acceleration mechanisms rely up to some extent in the presence
of shocks, see for example Derishev et al. (2003). Of course, particles may also be accelerated
without shocks by means of an electric field as expected to occur in pulsar magnetospheres.
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the difficulties of the MHD formulation; you can find some simple calculations that
demonstrate it in Komissarov (2011). A basic exposition of instabilities and the in-
teraction of jets with the medium follows. Any mathematics is avoided here; we put
special emphasis on illustrating the effects of these processes on the structure of the
flow, and how they may be related to the dissipation of energy and formation of
shocks.

5.8.1 Alternative Mechanisms of Launching and Acceleration

5.8.1.1 Magnetic Towers

The “magnetic tower” model was introduced in a series of papers by Lynden-Bell
and Boily (1994) and Lynden-Bell (1996, 2003, 2006), and has been studied theo-
retically and numerically by many others; see for example Li et al. (2001), Kato et
al. (2004a, 2004b), Nakamura et al. (2006, 2007, 2008), Uzdensky and MacFadyen
(2006, 2007), and Huarte-Espinosa et al. (2012).

In its elementary formulation, the mechanism of formation of a magnetic tower
is the following. Consider an accretion disk with an initial configuration of magnetic
field consisting in loops whose two footpoints are anchored to the disk at different
radii. An alternative configuration could be one with one footpoint of the line an-
chored to the disk and another to the central rotating star. The plasma immediately
above (below) the disk is assumed to be in force-free state. Since the disk is in dif-
ferential rotation, each field line is twisted at a rate equal to the difference between
the angular velocity at the radii the footpoints are anchored. Then the field develops
a toroidal component.

The magnetic pressure exerted by the toroidal field makes the loops expand in
the way shown in Fig. 5.12. If there is no external pressure, however, after less than
a complete turn the field stretches to infinity and the inner and outer parts of the
disk initially connected by the magnetic loops become disconnected. The inclination
angle of the field lines with respect to the symmetry axis is 60◦, so the process yields
a very poor collimation. When a non-vanishing external pressure is added the picture
changes completely. As soon as the magnetic pressure inside the loops equals the
external pressure the lateral expansion of the field lines stops. Instead, these continue
to expand vertically and a structure in the shape of a column develops; this is the
“magnetic tower”. By pressure balance Uzdensky and MacFadyen (2006) estimate
the radius of the tower to be

R ∼
(

Ψ 2
0

8πPext

)1/4

, (5.100)

where Ψ0 is the poloidal magnetic flux per unit toroidal angle in the tower and Pext
is the external pressure. The height of the tower increases with every turn of the disk
at an approximately constant rate.
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Fig. 5.12 Formation of a magnetic tower: evolution of the magnetic field lines in the poloidal
plane. Loops of magnetic field anchored to an accretion disk in differential rotation around a black
hole (BH) inflate, remaining confined by the ambient pressure. Adapted from Uzdensky and Mac-
Fadyen (2006)

The rise of magnetic towers has been observed in numerical simulations. Kato
et al. (2004a) performed time-dependent MHD simulations of a neutron star sur-
rounded by an accretion disk connected by an initially dipolar magnetic field. The
temporal evolution of the flow and the magnetic field configuration are shown in
Fig. 5.13. The magnetic loops at first expand poorly collimated, but later get col-
limated into a cylindrical column as pressure balance between the interior and the
exterior of the tower is established. The head of the jet advances at a speed ∼0.1c
into the medium. Notice that matter moves away from the disk in the outside of
the tower and towards the star in the inner region, thus a current sheet develops.
Magnetic reconnection in the current sheet injects plasmoids in the jet.

In an additional MHD simulation Kato et al. (2004b) addressed the role of the
external pressure and followed the temporal evolution of the magnetic tower until
the system reached the steady state. They found that the development of the tower
depends quite strongly on the value of the external pressure: when this is too large
the rise of the tower is suppressed. Even for (nonzero) values of the pressure that let
the jet be launched, they observe that the magnetic tower ordered structure is only
transient. After some time it switches to a quasi-steady complex array of field lines,
as seen in Fig. 5.14.

These simulations predict that near the axis the magnetic field has a significant
poloidal component, whereas the toroidal field is dominant in the outside boundary
of the jet. More recent simulations by Huarte-Espinosa et al. (2012) yield similar
results. Roughly, the interior of the tower may be described as a cavity with low
matter density and magnetically-dominated (with a low thermal-to-magnetic energy
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Fig. 5.13 Formation of a magnetic tower jet in a neutron star/accretion disk system. The arrows
indicate the velocity field, the solid lines the poloidal magnetic field, and the color code the strength
of the toroidal magnetic field. Letters A, B, C, and D mark the plasmoids injected in the jet at
magnetic reconnection sites. Each plot corresponds to a different simulation time. Lengths are
measured in units of the Schwarzschild radius of the star. From Kato et al. (2004a). Reproduced
by permission of the AAS

Fig. 5.14 Three dimensional plot of the magnetic field lines in a magnetic tower. Left: field con-
figuration for short timescales. Right: field configuration in (quasi-)steady state. From Kato et al.
(2004b). Reproduced by permission of the AAS

ratio). The cavity is collimated by the external medium. The axial core of the tower
has higher density and higher thermal-to-magnetic energy ratio, and is collimated
by the toroidal field in the cavity.

Magnetic field configurations with strong toroidal components are prone to be-
come unstable (we shall say more on this topic below). Kato et al (2004b; see also
Nakamura et al. 2006), however, found no apparent sign of disruption of the jet by
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instabilities. Nakamura et al. (2007) discuss some mechanisms that may hinder the
growth of instabilities in magnetic towers. They also perform simulations adding
some initial velocity field to the background medium, finding that in this case non-
axisymmetric current-driven kink instabilities may develop. Huarte-Espinosa et al.
(2012) argued based on the results of simulations that the conditions imposed on
the flow (i.e. adiabatic evolution, radiative cooling, rotation at the base of the tower)
may preferably switch on certain instability modes.

To close our discussion we briefly comment that supersonic magnetized jets with
characteristics that resemble those of magnetic towers have been created in labora-
tory experiments. These jets show current-driven instabilities that lead to clumping.
Accounts of the experimental setups and the results are given in Lebedev et al.
(2005) and Suzuki-Vidal et al. (2011).

5.8.1.2 Impulsive Acceleration

Contopoulos (1995) proposed a MHD model of jet launching that relies only on
the existence of a toroidal magnetic field. The model is motivated by the result that
the differential rotation of the accretion disk is expected to amplify the toroidal, not
the poloidal, component of the magnetic field. When the poloidal component is set
to zero the magnetic field configuration is that of circular rings (axial symmetry
is assumed) all along the outflow from the base. Since there is no poloidal field
the magnetocentrifugal mechanism does not work, and the outflow is driven by a
vertical gradient of magnetic pressure and not by the rotation of the disk.

In the non-relativistic version of the model the flow is described by the set of
equations in Sect. 5.3. But as Bp = 0 the concept of flux function is now useless. In
its place, a stream function Φ(r, z) may be defined such that the poloidal velocity
is calculated from its derivatives. The poloidal velocity is tangent to the lines of
Φ = constant in the poloidal plane, and Φ/2 is the mass flux through a section of
radius r of the jet. As in the general case, there are functions of Φ that remain
constant along streamlines. One is the angular momentum L(Φ) = vφr , that now
is solely carried by matter. The constant E(Φ) related to the poloidal energy flow,
on the other hand, has contributions from matter and electromagnetic field. From
the equation of momentum conservation a differential equation for Φ is obtained.
Contopoulos (1995) showed that it reduces to the general Grad-Shafranov equation
in the limit when Bp/Bφ→ 0.15 The mathematical description of the flow, however,
is simpler than in the general case because there is only one critical surface—the fast
magnetosonic—instead of three.

A self-similar solution of these set of equations is presented in Contopoulos
(1995). At large distances from the central object the solution has the same proper-
ties (a steady collimated outflow) than models with Bp �= 0; this is to be expected
since we have seen that asymptotically the toroidal magnetic field dominates over

15Recall that, in general, fixing the shape of the poloidal field does not yield a consistent solution
of the MHD equations since such B does not satisfy the Grad-Shafranov equation.
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the poloidal component. The two types of models differ in the characteristics im-
posed on the launching region. In the magnetocentrifugal model, there must exist
a poloidal magnetic field with a certain inclination with respect to the disk to ini-
tially accelerate the plasma. In the model with Bp = 0, the necessary condition is a
continuous supply of toroidal magnetic flux by the disk. As we have already said,
and as Contopoulos (1995) notices, a purely toroidal magnetic field configuration
is prone to strong instabilities. The acceleration of the flow by vertical gradient of
magnetic pressure is then not expected to operate over large length scales. But if
transient events of toroidal field expulsion by the disk occurred, this may be an ef-
ficient mechanism to launch discrete jets (blobs of plasma) instead of continuous
outflows.

Lately, the idea of impulsive acceleration of relativistic outflows has been taken
up in the works of Lyutikov (2010a, 2010b), Lyutikov and Lister (2010), Granot
et al. (2011), and Granot (2012a, 2012b). A basic version of the mechanism that
illustrates its potential is discussed in Granot et al. (2011). They consider a one di-
mensional planar shell16 of cold, highly magnetized plasma that rests on one side on
a conducting wall and faces vacuum on the other. At t = 0 the length of the shell is
l0, the magnetic field is B0 (uniform and parallel to the wall), and the magnetization
σ0 � 1. The evolution of the shell for t > 0 consists of three stages. Initially, as
the shell is left to expand against vacuum driven by magnetic pressure gradient, a
rarefaction wave propagates towards the wall. The front of the wave travels almost
at the speed of light and reaches the wall at t0 ∼ l0/c, signaling the end of the first
or “impulsive” phase. By this time the shell has effectively separated from the wall;
it propagates keeping a constant thickness ∼2l0 with a low density and low energy
tail behind. Around the end of the impulsive stage, the mean Lorentz factor and
the magnetization of the plasma are 〈Γ 〉 ∼ σ 1/3

0 and 〈σ 〉 ∼ σ 2/3
0 , respectively. Dur-

ing the second phase, until tc ∼ t0σ 2
0 , the flow accelerates as 〈Γ 〉 ∝ t1/3 eventually

reaching 〈Γ 〉 ∼ σ0 and σ ∼ 1. There is no further increase of the Lorentz factor dur-
ing the third phase, whereas the magnetization continues to decrease as σ ∼ t−1 and
the flow eventually becomes matter-dominated. Granot et al. (2011) nicely explain
how the working principle of the process is related to the conservation of momen-
tum, and resort to familiar phenomena such as rocket launching and a pair of masses
attached to a spring for analogies.

The attractive feature of the impulsive acceleration is that, under a variety of con-
ditions, it leads to a more rapid and efficient conversion of magnetic-to-kinetic en-
ergy compared to the standard MHD steady acceleration. The impulsive mechanism
is likely to operate more efficiently in variable astrophysical sources that produce
discrete ejecta.17 Granot et al. (2011) argue that to maximize the advantages of the
mechanism the time between ejections should be relatively long, enough as to leave
large (almost) empty regions between shells. In this manner, when the shells col-
lide they would be already in the kinetic energy-dominated phase thus leading to an
efficient energy dissipation at shocks.

16The results apply as well to the case of a spherical shell.
17Such events are observed for instance in microquasars, see next chapter.



200 5 Jets

Granot et al. (2011) discuss the plausibility that a situation similar to those of
their simplified model arises in jet launching sources. They also develop applica-
tions of the model using values of the characteristic parameters of the order expected
to reproduce the conditions in GRBs and AGN. The conclusion is that the combi-
nation of steady MHD acceleration/collimation followed by the onset of impulsive
acceleration may explain the large Lorentz factors inferred for GRBs, and help to
mitigate the problem of the efficiency of energy dissipation in shocks in AGN jets.

5.8.2 Instabilities and Interaction with the Medium

Astrophysical jets propagate keeping well collimated for extremely long distances
(up to millions of light years in AGN) until they brake by interaction with the
medium. This is indeed a striking fact, considering that jets are subject to instabil-
ities that manifest as distortions in their structure such as bends, knots, and twists.
Eventually, the growth of instabilities may lead to serious decollimation and even
the complete disruption of jets. Since observations make it clear that this extreme
situation is not the most usual, some stabilizing mechanisms must operate to pre-
vent it. We shall restrict our discussion on instabilities in jets to the very basics;
comprehensive and updated reviews on theoretical and numerical work in this topic
are presented in Hardee (2011) and Perucho (2012).

The analytical study of the stability of a magnetized flow is performed lineariz-
ing the equations of MHD. In the simplest case of a cylindrical axisymmetric jet
one seeks for an expansion of the solution in Fourier components of the form
exp[i(k · r+mφ −ωt)]. The integer m = 0,±1, . . . specifies the azimuthal order
of the normal mode. A mode is unstable if ω or k are complex so that the amplitude
of the perturbation grows. When looking for solutions of the linearized equations it
is assumed that the perturbations remain of small amplitude. If this is not satisfied a
full non-linear stability analysis must be carried out.

The two types of instabilities most relevant to astrophysical jets are the current-
driven instability (CDI) and the Kelvin-Helmholtz instability (KHI). Both are ex-
pected to occur in Poynting-dominated regions of the jet, but only the KHI in the
kinetically-dominated zones. There is a second type of instability that, like the CDI,
occurs even in the absence of bulk motion. This is the so-called pressure-driven in-
stability, triggered by the lack of balance between gas and magnetic pressure. We
shall not deal with the pressure-driven instability here; you can see the works of
Begelman (1998), Kersalé et al. (2000), and Longaretti (2003) for more on it.

Current-driven instabilities are triggered by gradients of the force exerted by a
toroidal magnetic field, and thus take place in jets that carry axial currents. Two
well-known modes of the CDI are the pinch or sausage (m= 0)mode and the helical
kink (m=±1)mode; their effects are sketched in Fig. 5.15 in the simplified case of
a column of plasma with toroidal magnetic field only. If some section of the column
narrows, the field strength locally increases. So does the magnetic tension, leading
to further compression. This is the onset of the pinch mode that causes the column
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Fig. 5.15 Instabilities in a
cylindrical column of plasma
driven by a toroidal magnetic
field (rings). Left: pinch
mode. Right: kink mode. The
arrows indicate the direction
of the net force on the column

to strangle. The kink mode switches on if the column is somehow perturbed and
bends. The toroidal field in the inner part of the kink becomes larger than in the
outer part, the magnetic pressure in the inner part rises, and the column continues
to bend more and more. Kink modes are generally regarded as the most threatening
for the stability of the jets; these excite large-scale helical motions that can seriously
distort the structure of the flow or even cause its disruption.

Both pinch and kink modes are stabilized by the presence of a poloidal magnetic
field. Indeed, stability criteria18 show that what determines the onset of the CDI is
a large value of the ratio Bφ/Bp, called the helicity of the magnetic field.19 The
growth of CDIs may be affected as well by the expansion and rotation of the jet. It
has been suggested that non-linear CDIs may help to convert magnetic energy into
kinetic energy (Hardee 2011).

The Kelvin-Helmholtz instability develops at the separation surface between two
flows with different velocities—the jet and the surrounding medium, for example.
The result is the mixing of both media. In jets, the mass entrainment driven by the
KHI may lead to decceleration, severe loss of collimation, and disruption. The spa-
tial growth rate of the KHI, however, is slowed down by a number of factors. These
include a large Lorentz factor, a large Mach number, low temperature or high den-
sity of the plasma, and the radial expansion of the jet. A wind that surrounds the jet
or a thick shear layer at the boundary operate in the same sense. The magnetic field
may also inhibit KHIs in several ways. A most interesting results is that magneto-
hydrodynamic jets are KH stable as long as they remain sub-Alfvénic (e.g. Romero
1995, Hardee and Rosen 1999, 2002).

The latest numerical works on the stability of jets are based on complex simula-
tions. A throughout numerical study of CDIs, for instance, is presented in a series of
papers by Mizuno et al. (2007, 2009, 2011, 2012). The simulations were designed
to study the effects of rotation, external winds, velocity shears, etc, on the devel-
opment of the CDI in relativistic jets. The initial equilibrium configuration is that
of force-free plasma with low gas pressure, threaded by a helical magnetic field
characterized by a “pitch” P ≡ rBz/Bφ . A small amplitude velocity perturbation is
imposed on this configuration.

The upper panels of Fig. 5.16 show the three-dimensional structure of a constant
density surface after the transition to the non-linear phase of the instability in three

18In a static force-free plasma, for example, the Kruskal-Shafranov criterion predicts instability
when −Bφ/Bp > 2πr/L, where r is the radius and L the length of the plasma column.
19In the frame of the standard MHD model, then, we expect that jets become unstable beyond the
Alfvén surface.
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Fig. 5.16 Top row: 3D structure of a constant density surface. Bottom row: cross section of the
jet showing the radial distribution of the logarithm of the density. The white lines are the magnetic
field lines. From left to right, the plots correspond to simulations with radially increasing, radially
decreasing, and constant value of the magnetic pitch. From Mizuno et al. (2009). Reproduced by
permission of the AAS

cases: from left to right, radially increasing, radially decreasing, and constant value
of the pitch. The column is twisted and wrapped by magnetic field lines although
in no case disrupted. The growth of the CDI kink instability triggers radial motions
of the plasma, more or less pronounced depending on the case. This can be clearly
seen from the density distributions on a cross section of the jet in the bottom panels.
Notice that the high-density core is displaced from its initial position on the axis.
The growth rate of the instability is found to depend on the behavior of the magnetic
pitch. Increasing the pitch with radius has a stabilizing effect: it slows down the
growth during the linear phase and retards the transition to the non-linear regime.
The opposite is true for a column with radially decreasing magnetic pitch.

Adding differential rotation to the column or a radially decreasing density and
gas pressure profile completely alters the outcome. Compare the previous results
with those in Fig. 5.17; the jet is now completely disrupted. These simulations by
Mizuno et al. (2012) also confirm the analytical result that the radial distribution of
the poloidal magnetic field strongly conditions the growth of the instability. More
or less homogeneous poloidal fields produce a slow linear growth and saturation
of the amplitude of the perturbations in the non-linear phase, with no significant
disruption of the jet. An increase of Bp towards the jet axis, on the other hand,
leads to the growth of the perturbations until the disruption of the structure of the
flow. Recall from Sect. 5.6 that an accumulation of poloidal magnetic flux in the
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Fig. 5.17 Same as in the top
row of Fig. 5.16, but for a
differentially rotating jet with
constant magnetic pitch at
two time instants. From
Mizuno et al. (2012).
Reproduced by permission of
the AAS

core of relativistic jets is predicted by the results of MHD simulations. Based on
this Mizuno et al. (2012) argue that Poynting-dominated jets may become strongly
kink-unstable when the magnetization falls to σ ∼ 1. The complete disruption of the
ordered field structure should dissipate magnetic energy, perhaps powering episodes
of flaring emission.

Instabilities may be also triggered by the interaction of the jet with the medium
it traverses. One possible cause is the development of recollimation (or reconfine-
ment) shocks that occur when the jet becomes supersonic and underpressured with
respect to the external medium (e.g. Sanders 1983; Falle 1991; Komissarov and
Falle 1997). Recollimation shocks prompt instabilities by exciting large amplitude
non-linear pinches or plasma motions that couple to the KHI (Perucho 2012). Fig-
ure 5.18 shows a snapshot of the simulated mass density distribution in a recolli-
mated jet. The outflow propagates in a medium of density that decreases with the
distance to the injection point. When the linear size of the jet is of the order of
∼1.5 kpc it becomes underpressured and a recollimation shock appears. Successive
phases of expansion and recollimation follow as the flow becomes over and under-
pressured with respect to its surroundings. The shocks set in oscillations and mass
entrainment that loads the jet and slows it down. Eventually the matter from the
external medium makes its way to the jet axis and disrupts it completely.

As we anticipated, shocks in general are expected to be sites where particles get
accelerated to relativistic energies and radiate. In this context, the bright stationary
or moving knotty patterns observed in many extragalactic jets have been linked to
reconfinement shocks (e.g. Stawarz et al. 2006). Notice that there are other possi-
ble explanations for the origin of internal structures in jets, among them Kelvin-
Helmholtz kink modes (e.g. Hardee and Eilek 2011; Perucho et al. 2012), jet pre-
cession, and pinches excited by the injection of fast and dense discrete components
into the flow (e.g. Agudo et al. 2001).

Analogously, the hot spots observed in some jets from active galaxies (those his-
torically classified as Fanaroff-Riley II) are associated with radiation emitted by
accelerated particles at the termination shocks. These are the shocks that form in the
boundary between the “head” of the jet and the external medium. Hydrodynamical
simulations of the jet/medium interaction in the termination region have been car-
ried out, for example, by Bordas et al. (2009) and Bosch-Ramon et al. (2011), see
Fig. 5.18.
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Fig. 5.18 Left: Logarithm of the rest mass density in a simulation of the temporal evolution of
an extragactic jet. The jet is eventually disrupted by mass entrainment following a recollimation
shock. A bow shock develops at the boundary between the jet and the medium. The right panel is
a detail of the “head” of the jet. Simulation by Perucho and Martí (2007). Figure from Bordas et al.
(2011), reproduced by permission of Oxford University Press on behalf of the Royal Astronomical
Society

Let us finally mention that jets may be disrupted by encounters with inhomo-
geneities in the medium like clouds, uniform or clumpy stellar winds, and stars (e.g.
Bosch-Ramon et al. 2012; Perucho and Bosch-Ramon 2012). You can see the simu-
lated effect of the impact of a clumpy wind on the jet in a X-ray binary in Fig. 5.19.

5.9 Content and Radiation from Jets

The matter content of jets is largely unknown. Jets may be energetically dominated
by a cold (thermal) proton-electron plasma plus a small contribution of relativistic
particles mixed with the outflow, or by a pure relativistic leptonic electron-positron
plasma. The former is expected to occur in hydrodynamic and magnetohydrody-
namic jets (such jets are called “hadronic” or “heavy” jets), whereas the latter seems
more likely to happen in black hole driven jets. Accretion loaded or black hole ro-
tation powered jets with medium entrainment can produce hadronic jets, whereas
black hole driven jets within a diluted medium may lead to leptonic jets. These lep-
tonic jets would consist basically of a powerful, collimated electromagnetic wave,
carrying just some electrons and positrons injected by pair creation at the base of
the jet.

In hydrodynamic and low magnetization MHD jets, the kinetic energy of a par-
ticle of mass m associated with the bulk motion in the direction of propagation
of the jet is eb = (γ − 1)mc2, where γ is the bulk Lorentz factor of the outflow.
It is expected to be much larger than the energy associated with jet expansion
(i.e. eexp ≈mv2

exp/2) and temperature (i.e. eT = kT ). This implies strong collima-
tion and a low speed of sound or Alfvén speed compared to the jet velocity—the
jet will be strongly supersonic/superalfvenic. If this were not the case, we learned
that jets may still be collimated and accelerated with the help of external pressure,
although it appears difficult that the right degree of collimation could be sustained
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Fig. 5.19 Two spatial views of the rest mass density distribution in a hydrodynamic simulation
of the interaction of a jet with the clumpy wind of the donor star in a X-ray binary. The clumps
are the high-density regions shown in yellow. The impact of the wind produces a recollimation
shock in the jet (top panel). A clump that penetrates the jet immediately after the shock induces a
large deviation in the direction of the flow (bottom panel). The matter in the clumps mixes with the
material of the jet, forming complex structures and producing turbulence. The entrainment slows
down the jet far from the launching region. From Perucho and Bosch-Ramon (2012), reproduced
with permission ©ESO

over astrophysical distances. For jets with dynamics dominated by the electromag-
netic field, the temperature of the plasma could be very large as long as collimation
is satisfied, i.e. the external and magnetic pressure should be well above the thermal
pressure. Otherwise, the flow would be uncollimated. The realization of the different
situations may take place in the same jet at different stages of its evolution. The jet
could be electromagnetic/leptonic at its very base, MHD/hadronic through external
medium entrainment at intermediate scales, and hydrodynamic at the largest scales
after magnetic energy has been used up to accelerate the jet.

As long as jets are radiatively efficient, they will shine across the electromag-
netic spectrum and may be detected, but when the conditions in the plasma are not
suitable for the production of significant radiation, they may keep dark all the way
to their termination regions. The radiation from jets can be thermal (continuum and
lines), although the detection of thermal jets is rare since the required densities are
high and the temperature and bulk velocity moderate. The detection of non-thermal
synchrotron radiation from jets, mainly in the radio band, is more common. For
that, it is required that some particles are accelerated up to relativistic energies, well
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above k T , and the presence of a magnetic field. Efficient high-energy and very high-
energy emission is possible if the radiation and/or the matter fields are dense enough.
This radiation can be produced, for example, by inverse Compton scattering, when
accelerated leptons are present, or by proton-proton collisions, when accelerated
hadrons are present (e.g. Bosch-Ramon et al. 2006; Romero et al. 2003). For a com-
prehensive description of radiative processes in jets, including particle transport, see
Reynoso et al. (2011) and Vila et al. (2012).

Below, we review some of the mechanisms of non-thermal electromagnetic emis-
sion relevant under physical conditions like those thought to exist in relativistic as-
trophysical jets. We shall consider processes that involve relativistic protons and
electrons, assuming that jets (although probably not all of them) can accelerate both
particle species efficiently. We shall divide the interactions according to the type of
target: magnetic field, matter, and photons. Abundant references are provided. The
reader particularly interested in radiation processes in astrophysics is referred to the
books by Rybicki and Lightman (1979), Longair (1994), Aharonian (2004), Dermer
and Menon (2009), and Romero and Paredes (2011).

5.9.1 Interaction with the Magnetic Field

5.9.1.1 Synchrotron Radiation

Any accelerated charged particle will radiate in the presence of a magnetic field.
When the particle is relativistic this radiation is a continuum and is called syn-
chrotron. In the classical limit, the power per unit energy emitted by a single particle
of mass m, energy E = γmc2, and charge e, whose velocity vector forms an angle
α (the pitch angle) with the magnetic field B is (e.g. Ginzburg and Syrovatskii 1965;
Blumenthal and Gould 1970)

Psynchr =
√

3e3B

4πmc2h

Eγ

Ec

∫ ∞

Eγ /Ec

K5/3(ζ )dξ. (5.101)

Here Eγ is the energy of the radiated photon, K5/3 is a modified Bessel function,
and

Ec = 3heB sinα

4πmc
γ 2. (5.102)

The synchrotron power peaks sharply around Eγ ≈ 0.29Ec. In general, this en-
ergy is much lower than the energy of the parent particle. Notice as well the depen-
dence of formulas (5.101) and (5.102) on the mass; clearly, light particles cool more
efficiently via synchrotron radiation than heavy ones. The synchrotron energy loss
rate for a single particle is

(
dE

dt

)

synchr
=−4

3

(
me

m

)2

cσT UBγ
2, (5.103)
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where UB = B2/8π is the magnetic energy density. Comparing a proton and an
electron with the same Lorentz factor, for example, we find that the electron loses
energy∼106 times faster. Most of the photons are emitted in the direction of motion
of the particle within a cone of semi aperture∼ 1/γ , so when the particle is relativis-
tic the radiation is highly collimated. Another important property of the synchrotron
radiation is that it is polarized.

To calculate the synchrotron spectrum emitted not by a single but by a distribu-
tion of particles, we must integrate Eq. (5.101) over particle energy and solid angle
in the pitch angle space. If N is the energy distribution of relativistic particles (in
units of erg−1 cm−3), the total synchrotron power per unit energy per unit volume
is

qsynchr(Eγ )=
∫ Emin

Emin

∫
Ωα

N(E,α)Psynchr(Eγ ,E,α) sinαdEdΩα. (5.104)

The particle distribution and the magnetic field may of course be inhomogeneous;
the spatial dependence is implicit in Eqs. (5.101) and (5.104) (and henceforth). An
important case is that of an isotropic particle distribution that is a power-law in
energy, i.e. N(E,α)= (K/4π)E−p . In the limit Emax →∞ and Emin → 0,20 the
emissivity can be calculated analytically and is given by

qsynchr(Eγ )= a(p)4πKe
3B

p+1
2

hmc2

(
3he

4πm3c5

) p−1
2

E
− p−1

2
γ . (5.105)

The constant a(p) equals

a(p)= 2
p−1

2
√

3

8
√
π(p+ 1)

Γ [(3p− 1)/12]Γ [(3p+ 19)/12]Γ [(p+ 5)/4]
Γ [(p+ 7)/4] (5.106)

where Γ [x] is the usual Gamma function. The key result from Eq. (5.105) is that
the synchrotron spectrum of a power-law distribution of particles with index p, is
another power-law in the energy of the emitted photons with index (p−1)/2. Thus,
the characteristics of the synchrotron emission may provide valuable information
on the distribution of parent particles and the mechanisms that accelerated them.

The classical formalism of synchrotron radiation is valid as long as

E

mec2

B

Bcr
� 1. (5.107)

The critical value of the magnetic field is

Bcr = m
2
ec

3

e�
≈ 4.4× 1013 G, (5.108)

20The expression in Eq. (5.105) is then valid for Eγ � Ec(Emin) and Eγ � Ec(Emax), i.e. far
from the low-energy and the high-energy cutoffs of the synchrotron spectrum.
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above which quantum effects turn relevant. In particular, photons can create
electron-positron pairs in the strong magnetic field

γ +B −→ e+ + e−. (5.109)

The processes of pair creation and synchrotron radiation become tightly coupled in
the quantum regime and can sustain an electromagnetic cascade. This phenomenon
is expected to occur in the magnetosphere of pulsars. Relevant formulas for syn-
chrotron radiation and pair creation in strong magnetic fields can be found, for in-
stance, in Baring (1988, 1989) and Anguelov and Vankov (1999).

For most applications to astrophysical jets, however, the classical formalism is
enough. The typical magnetic field strength and the maximum energy of particles
in jets in active galactic nuclei and galactic X-ray binaries are expected to be satisfy
condition (5.107). In these systems the emission of synchrotron radiation at radio
wavelengths is the signature of the presence of jets. The shape of the radio spectrum
is very characteristic: the flux density depends on the frequency as Sν ∝ ν−l with
l ∼ 0, so the spectrum is approximately flat. This is very well reproduced assuming
that the synchrotron radiation is emitted by a power-law distribution of relativistic
electrons in an outflow that expands as it propagates (e.g. Hjellming and Johnston
1988; Blandford and Königl 1979). In some galactic jets the radio and X-ray emis-
sion appear to be correlated (Corbel et al. 2003; Gallo et al. 2003), suggesting that
the relativistic electrons in the jets are energetic enough to radiate synchrotron pho-
tons up to the X-ray band.

5.9.2 Interaction with Radiation

5.9.2.1 Inverse Compton Scattering

A photon can gain energy in the elastic scattering off an electron (or positron),21

e− + γ −→ e− + γ. (5.110)

This process is called inverse Compton (IC) scattering.
Figure 5.20 shows a sketch of the interaction as seen in the rest frame of the elec-

tron (primed variables) and in the lab frame (unprimed variables). From the conser-
vation of energy and momentum it is easy to calculate the energy of the scattered
photon in the rest frame of the electron:

E′γ =
E′ph

1+ (E′ph/mec
2)(1− cos θ ′2)

, (5.111)

21Inverse Compton scattering off protons and other particles much heavier than the electron is very
inefficient and therefore generally neglected. Protons have other much more efficient channels of
interaction with radiation as we shall see.
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Fig. 5.20 Inverse Compton scattering in the lab frame (left) and in the rest frame of the electron
(right)

where θ ′2 is the scattering angle. Transforming to the lab frame,

Eγ = γeE′γ
(
1− β cos θ ′2

)
(5.112)

where γe = Ee/mec2 is the Lorentz factor of the electron before the collision and
β = (1− γ−2

e )1/2. When E′ph � mec
2 the interaction takes place in the Thomson

limit; this amounts to EeEph �m2
ec

4 in the lab frame. In the Thomson regime the
scattering is almost elastic in the rest frame of the electron and E′γ ≈ E′ph. The
maximum energy of the scattered photon in the lab frame is then

Eγ,max ≈ 4γ 2
e Eph, (5.113)

that corresponds to a head-on collision. The energy of the scattered photons is large
although still much smaller than that of the electron, that loses just a modest frac-
tion of its energy in the interaction. In the opposite limit, EeEph � m2

ec
4, the in-

teraction occurs in the Klein-Nishina regime. In this regime the electron transfers
almost all its energy to the photon in a single collision; the energy loss is said to be
“catastrophic”.22 However, the probability of interaction decreases drastically and
so, overall, electron cooling in the Klein-Nishina regime is quite inefficient. This
may be readily demonstrated analyzing the cross section, as we shall show below.

To calculate the energy loss rate for an electron in an isotropic photon distribution
n(Eph), the IC spectrum must be integrated over the initial and final energy of the
photons:

(
dE

dt

)

IC
=−

∫ Emax
ph

Emin
ph

dEph

∫ Emax
γ

Eph

dEγ (Eγ −Eph)PIC. (5.114)

The function PIC and the maximum energy of the scattered photons Emax
ph are given

below in Eqs. (5.120) and (5.124), respectively. In the Thomson limit Eq. (5.114)

22In this limit the energy loss rate cannot be strictly considered as a continuous function of the elec-
tron energy. A more rigorous treatment is discussed, for example, in Khangulyan and Aharonian
(2005) and Moderski et al. (2005).
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reduces to the well known expression
(
dE

dt

)

IC,Th
=−4

3
cσT Uphγ

2. (5.115)

This is identical to the synchrotron cooling rate for an electron if the magnetic en-
ergy density is replaced by the energy density Uph of the target photon field.

The exact differential cross section for Compton interaction is given by the Klein-
Nishina formula (e.g. Blumenthal and Gould 1970)

dσKN

dΩ ′2dE′γ
= r

2
e

2

(
E′γ
E′ph

)2(E′ph

E′γ
+ E′γ
E′ph

− sin2 θ ′2
)

× δ
(
E′γ −

E′ph

1+ (E′ph/mec
2)(1− cos θ ′2)

)
, (5.116)

where re is the classical electron radius. The total cross section is an invariant, so it
can be calculated integrating Eq. (5.116). The angle-averaged23 result is

σIC = 3σT

8x

[(
1− 2

x
− 2

x2

)
ln(1+ 2x)+ 1

2
+ 4

x
− 1

2(1+ 2x)2

]
, (5.117)

where we have defined x = EeEph/m
2
ec

4. In the Thomson limit (x� 1) it reduces
to

σIC ≈ σT(1− 2x), (5.118)

whereas in the Klein-Nishina regime (x� 1) it indeed falls drastically as

σIC ≈ 3

8
σTx

−1 ln(4x). (5.119)

To calculate the inverse Compton spectrum from the interaction of an electron
distribution N(Ee) with an isotropic target photon distribution n(Eph) we can resort
to the formulas given in Blumenthal and Gould (1970). We define

PIC = 3σTc

4γ 2
e

n(Eph)

Eph
F(q) (5.120)

and

F(q)= 2q lnq + (1+ 2q)(1− q)+ 1

2
(1− q) (qΓe)

2

(1+ Γeq)
, (5.121)

23In certain astrophysical systems the IC scattering cannot be approximated as isotropic. An ex-
ample is the interaction of electrons in the jets in X-ray binaries with the radiation field of the
companion star. A full treatment taking into account the collision angle is then required, see e.g.
Dermer and Schlickeiser (1993) and Khangulyan et al. (2008).
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where

Γe = 4EphEe

m2
ec

4
(5.122)

and

q = Eγ

ΓeEe(1−Eγ /Ee)
. (5.123)

Equation (5.120) is valid both in the Thomson and Klein-Nishina regimes as long
as γe � 1. The energy of the scattered photons is constrained to be within the range

Eph ≤Eγ ≤ Γe

1+ Γe
Ee, (5.124)

hence Eγ → Ee for Γe � 1 in the Klein-Nishina limit. The IC emissivity is calcu-
lated integrating over the energies of the electron and the target photons,

qIC(Eγ )=
∫ Emax

e

Emin
e

∫
N(Ee)PIC(Eγ ,Ee,Eph)dEphdEe. (5.125)

The limits in the integral over Eph at fixed Ee must be taken from Eq. (5.124).
In the Thomson regime and if the electron energy distribution if a power-law
N(Ee)=KE−pe , the integral over Ee can be solved analytically. The result is that,
far from the low and high-energy cutoffs, the IC emissivity follows a power-law
qIC ∝ E−lγ with l = (p + 1)/2. You can find the complete expression for the emis-
sivity and some further calculations for the special case of a blackbody target photon
field in Blumenthal and Gould (1970).

5.9.2.2 Proton-Photon Inelastic Collisions

The cross sections for interactions of high-energy hadrons with photons are small
compared to those of matter-matter interactions. However, in some astrophysical
environments, radiation density is larger than matter density and photohadronic pro-
cesses may become relevant.24

Inelastic collisions of high-energy protons with photons proceed along two main
channels. For a proton of energy Ep = γpmpc2, the direct creation of an electron-
positron pair (photopair production)

p+ γ → p+ e− + e− (5.126)

24Photohadronic interactions of cosmic rays protons with the cosmic microwave background set
an upper limit to the energy of cosmic rays arriving to Earth of ∼5× 1019 eV. This is the famous
Greisen-Zatsepin-Kuzmin (GZK) cutoff.
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is possible above the threshold EpEph > 2m2
ec

4. When the energy of the target
photon in the rest frame of the proton exceeds

E
′(π)
ph(thr) =mπ0c

2
(

1+ mπ0

2mp

)
≈ 145 MeV (5.127)

the creation of pions (photopion or photomeson production) takes over

p+ γ → p+ aπ0 + b(π+ + π−), (5.128)

p+ γ → n+ π+ + aπ0 + b(π+ + π−). (5.129)

The integers a and b are the pion multiplicities. Near the threshold in (5.127) the
production of a single pion dominates; multiple pions are created at higher energies.

Neutral pions have a mean life τπ0 = 8.52× 10−17 s. They decay with a branch-
ing ratio ≥ 98.8 into two gamma-rays,

π0 → γ + γ. (5.130)

Charged pions decay into muons and neutrinos, and muons into electrons/positrons
and more neutrinos,

π+ → μ+ + νμ, μ+ → e+ + νe + νμ, (5.131)

π− → μ− + νμ, μ− → e− + νe + νμ. (5.132)

The decay of charged pions and muons is a weak process. The mean lifetime of
these particles—τπ± ≈ 2.6 × 10−8 s and τμ ≈ 2.2 × 10−6 s—is several orders of
magnitude larger than that of the neutral pion, whose decay is purely electromag-
netic.

The energy loss rate of a proton in an isotropic photon distribution n(Eph) can
be conveniently parameterized as (e.g. Begelman et al. 1990)

(
dE

dt

)

pγ

=−mpc
3

2γp

∫ ∞

E
′(i)
ph(thr)/2γp

dEph
n(Eph)

E2
ph

×
∫ 2γpEph

E
′(i)
ph(thr)

dE′phσ
(i)
pγ

(
E′ph

)
K(i)pγ

(
E′ph

)
E′ph, (5.133)

where i = e,π denotes the interaction channel, σ (i)pγ is the cross section, and K(i)pγ is
the inelasticity, defined as the fractional energy loss of the proton.

The study of photohadronic interactions from very first principles is obviously
complex. Data on the cross sections and inelasticities are obtained experimen-
tally and from numerical simulations like the Monte Carlo code SOPHIA (Mücke
et al. 2000). Fortunately, some simple parameterizations are available in Atoyan
and Dermer (2003), Begelman et al. (1990), and Maximon (1968). The photopion
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cross section and inelasticity are of the order of 0.1–0.3 mb and 0.2–0.6, respec-
tively. The cross section for pair production (often referred to as Bethe-Heitler cross
section) is about two orders of magnitude larger but the inelasticity is very low,
K
(e)
pγ ∼ 2me/mp . As a result, the cooling is completely dominated by pion produc-

tion as soon as the energy of the photons is larger than the threshold in Eq. (5.127).
Kelner and Aharonian (2008, 2010) introduced convenient analytical expressions

for the gamma-ray spectrum from photohadronic interactions (see also Atoyan and
Dermer 2003). Given the distributions of relativistic protons Np(Ep) and target
photons n(Eph), the gamma-ray emissivity can be written as

qγ (Eγ )=
∫ Emax

p

Emin
p

dEp

∫ ∞

E
′(π)
ph(thr)/2γp

dEph
1

Ep
Np(Ep)n(Eph)Φ(η, x). (5.134)

Here η= 4EphEp/m
2
pc

4 and x =Eγ /Ep . From numerical results obtained with the
code SOPHIA, the function Φ(η,x) can be approximated with an accuracy better
than 10 %. Let us define x± as

x± = 1

2(1+ η)
[
η+ r2 ±

√(
η− r2 − 2r

)(
η− r2 + 2r

)]
. (5.135)

Then, in the range x− < x < x+,

Φγ (η, x)= Bγ exp

{
−sγ

[
ln

(
x

x−

)]δγ }[
ln

(
2

1+ y2

)]2.5+0.4 ln(η/η0)

, (5.136)

where

y = x − x−
x+ − x− (5.137)

and

η0 = 2
mπ

mp
+ m

2
π

m2
p

≈ 0.313. (5.138)

For x < x−, the spectrum is independent of x,

Φγ (η, x)= Bγ [ln 2]2.5+0.4 ln(η/η0), (5.139)

and finally Φγ (η, x) = 0 for x > x+. The parameters Bγ , sγ and δγ are functions
of η. For values of 1.1η0 < η < 100η0, these functions are tabulated in Kelner and
Aharonian (2008).

We shall not reproduce them here, but if one wishes to calculate the injec-
tion spectra of pions, muons, electron/positrons, and neutrinos from proton-photon
collisions, all the necessary formulas under different approximations are given in
Schlickeiser (2002), Atoyan and Dermer (2003), Mastichiadis et al. (2005), Lipari
et al. (2007), and Kelner and Aharonian (2008). Although generally disregarded, the
cooling of pions and muons before decay may be considerable if these particles are
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created energetic and in a medium with a strong magnetic field, for example. The
energy losses of pions and muons affect the spectrum of neutrinos injected at their
decay. Neglecting this effect can lead to an overprediction of the neutrino emissiv-
ity, see Reynoso and Romero (2009) for a detailed application to the production
of neutrinos in galactic jets. Notice that the emission of neutrinos is the imprint of
hadronic interactions. The detection of neutrinos from any given type of astrophys-
ical source (with jets, for example) would definitely prove it can accelerate protons
up to relativistic energies. The two largest and most sensitive active neutrino de-
tectors, ANTARES and IceCube, up to now have failed to pinpoint any galactic or
extragalactic source of high-energy neutrinos. The search is ongoing. It is expected
that the chances of detection will improve significantly with the next-generation
neutrino telescope KM3NeT, and future upgrades of IceCube.

5.9.3 Interaction with Matter

5.9.3.1 Proton-Proton Collisions

The inelastic collision of a relativistic proton with a low-energy proton creates
mesons. The reactions with the lowest energy thresholds correspond to the creation
of pions

p+ p→ p+ p+ aπ0 + b(π+ + π−), (5.140)

p+ p→ p+ n+ π+ + aπ0 + b(π+ + π−), (5.141)

p+ p→ n+ n+ 2π+ + aπ0 + b(π+ + π−). (5.142)

The integers a and b are, as before, the pion multiplicities. The energy threshold of
the proton for the production of a single neutral pion is

Ep(thr) =mpc2 + 2mπ0c
2
(

1+ mπ0

4mp

)
≈ 1.22 GeV. (5.143)

The energy loss rate for a proton of energy Ep due to inelastic collisions with a
target field of low-energy protons with number density np is (e.g. Begelman et al.
1990; Aharonian and Atoyan 2000)

(
dE

dt

)

pp

≈−cnpKppσpp(Ep)Ep. (5.144)

Here σpp is the total inelastic cross section and Kpp ≈ 0.5 is the total inelasticity
of the interaction. Most of the energy lost by the relativistic proton is transferred
to only one or two “leading” pions. The cross section σpp(Ep) can be accurately
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Fig. 5.21 Inelastic cross
section for proton-proton
collisions. The filled circles
are experimental data and the
empty circles the results of
simulations with the code
SIBYLL. Reprinted figure
with permission from Kelner
et al. (2006). Copyright
(2006) by the American
Physical Society

approximated as (Kelner et al. 2006)

σinel(Ep)=
(
34.3+ 1.88L+ 0.25L2)

{
1−

[
Ep(thr)

Ep

]4}2

mb, (5.145)

where L= ln(Ep/1 TeV). As seen in Fig. 5.21, this expression correctly describes
the cross section near the threshold and fits data from experiments and simulations
up to at least Ep ∼ 104 TeV.

Kelner et al. (2006, 2009) introduced an useful parameterization for the spec-
trum of gamma rays due to the decay of neutral pions created in proton-proton
collisions. The formulas were obtained fitting the results of the code SIBYLL, used
to study atmospheric cascades at ultra-high energies (Fletcher et al. 1994). Defining
x =Eγ /Ep , the gamma-ray emissivity (in units of erg−1 cm−3 s−1) is given by

q(pp)γ (Eγ )= cnp
∫ Emax

p

Eγ

1

Ep
σpp(Ep)Np(Ep)Fγ (x,Ep)dEp. (5.146)

The function Fγ (x,Ep) is the number of photons per unit energy created per proton-
proton collision; its full expression is

Fγ (x,Ep) = Bγ lnx

x

[
1− xβγ

1+ kγ xβγ (1− xβγ )
]4

×
[

1

lnx
− 4βγ xβγ

1− xβγ −
4kγ βγ xβγ (1− 2xβγ )

1+ kγ xβγ (1− xβγ )
]
. (5.147)
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For proton energies in the range 0.1 TeV ≤ Ep ≤ 105 TeV, fits to the results of
SIBYLL yield

Bγ = 1.30+ 0.14L+ 0.011L2, (5.148)

βγ =
(
1.79+ 0.11L+ 0.008L2)−1

, (5.149)

kγ =
(
0.801+ 0.049L+ 0.014L2)−1

. (5.150)

The function Fγ (x,Ep) includes, along with the contribution to the gamma-ray
spectrum from the π0 decay, that from the decay of the η-meson. Around x ∼ 0.1,
the contribution to the gamma-ray spectrum from the η-mesons is about 25 %.

Equation (5.146) is valid for Ep � 100 GeV. At lower energies, the gamma-ray
emissivity can be calculated to a good accuracy using the δ-functional formalism
(Aharonian and Atoyan 2000; Kelner et al. 2006). In this approximation all the
neutral pions carry a fixed fraction of the kinetic energy of the relativistic proton,
Eπ ≈KπEkin

p . The injection function of neutral pions is then

Q
(pp)

π0 (Eπ) = ñcnp
∫
δ(Eπ −KπEkin)σpp(Ep)Np(Ep)dEp

= ñ

Kπ
cnpσpp

(
mpc

2 + Eπ
Kπ

)
Np

(
mpc

2 + Eπ
Kπ

)
, (5.151)

where ñ is the number of neutral pions created per proton-proton collision. The
gamma-ray emissivity is directly calculated from Q

(pp)

π0 as

q(pp)γ (Eγ )= 2
∫ Emax

p

Emin

Q
(pp)

π0 (Eπ)√
E2
π −m2

π0c
4
dEπ, (5.152)

with

Emin =Eγ +
m2
π0c

4

4Eγ
. (5.153)

For a given value of Kπ , the value of ñ is fixed demanding continuity between
Eqs. (5.146) and (5.152) at Ep = 100 GeV.25 Taking Kπ = 0.17 provides a good
agreement with the results of simulations (Aharonian and Atoyan 2000). Since for
Ep � 100 GeV the cross section is essentially constant, the shape of the photon
spectrum in the δ-functional formalism is similar to the shape of the parent proton
spectrum, shifted in energy by a factor Kπ .

An expression for the injection function of charged pions in proton-proton colli-
sions is also given in Kelner et al. (2006).

25It is assumed that ñ and Kπ depend only weakly on the energy of the proton.
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5.9.3.2 Relativistic Bremsstrahlung

Bremsstrahlung radiation is produced when a relativistic charged particle is acceler-
ated in an electrostatic field. Bremsstrahlung losses are essentially catastrophic: the
particle loses almost all its energy in one interaction, and most of the emitted radia-
tion is in the form of high-energy photons. We can, however, introduce an average
continuous cooling rate. For an electron of energy Ee in a plasma of fully ionized
nuclei of charge eZ and number density np ,

(
dE

dt

)

Br
=−4αFSr

2
e Z

2cnpEe

[
ln

(
2Ee
mec2

)
− 1

3

]
, (5.154)

where αFS is the fine structure constant and re the classical electron radius.
The differential cross section for the emission of a photon with energy Eγ by

an electron of energy Ee�mec
2 in the presence of a nucleus of charge eZ is (e.g.

Berezinskii et al. 1990)

dσBr

dEγ
(Eγ ,Ee) = 4αFSr

2
e Z

2

Eγ

[
1+

(
1− Eγ

Ee

)2

− 2

3

(
1− Eγ

Ee

)]

×
{

ln

[
2Ee(Ee −Eγ )
mec2Eγ

]
− 1

2

}
. (5.155)

The total Bremsstrahlung emissivity from a distribution of electrons Ne(Ee) can be
directly calculated from the differential cross section and the distribution of elec-
trons as

qBr(Eγ )= cnp
∫ Emax

e

Emin
e

dEe
dσBr

dEγ
(Eγ ,Ee)Ne(Ee). (5.156)

5.9.4 Absorption

5.9.4.1 Photon-Photon Annihilation

The production of electron-positron pairs by annihilation of two photons

γ + γ → e+ + e−, (5.157)

is a sink for photons but also a source of pairs. The process is possible only above
the kinematic energy threshold

EphEγ (1− cos θ)≥ 2m2
ec

4, (5.158)

where Eγ and Eph are the energies of the photons, and θ is the collision angle in the
observer frame. The annihilation cross section is (e.g. Gould and Schréder 1967)

σγγ (β)= 3

16
σT
(
1− β2)

[(
3− β4) ln

(
1+ β
1− β

)
− 2β

(
2− β2)

]
. (5.159)
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Here β = (1 − γ−2
e )1/2 and γe is the Lorentz factor of the electron (positron) in

the center of momentum frame. It is related to the energy of the photons and the
collision angle as

(
1− β2)= 2m2

ec
4

(1− cos θ)EphEγ
, 0≤ β < 1. (5.160)

We define the optical depth τγ γ (Eγ ,R) as the probability that a photon of en-
ergy Eγ annihilates against another photon of the target radiation field n(Eph), after
traversing a distance R. It is given by (e.g. Gould and Schréder 1967)

τγ γ (Eγ ,R)= 1

2

∫ R

0
d�

∫ ∞

Eph(thr)

dEph

∫ umax

−1
du(1− u)σγγ (Eγ ,Eph, u)n(Eph),

(5.161)
where u = cos θ and � is a spatial variable along the path of the photon. The inte-
gration limits are

Eph(thr) = m
2
ec

4

Eγ
, (5.162)

and

umax = 1− 2m2
ec

4

EphEγ
. (5.163)

Because of the narrowness of the pair production cross section, a gamma ray of
energy Eγ can effectively be absorbed by photons with energy in a narrow band
centered at Eph ≈ 4m2

ec
4/Eγ .

Notice that the absorption of radiation by interaction with matter may also be of
importance, specially in extragalactic sources. At low energies (Eγ � 1 keV) the
dominant mechanisms of absorption are scattering off dust and, for Eγ > 13.6 eV,
photoionization. Direct Compton scattering and pair creation in photon-nuclei col-
lisions become relevant above Eγ ≈ 1 keV.

Under the conditions ε � mec
2 � Eγ , the pair emissivity that results from the

interaction of two isotropic photon distributions nγ and nph can be approximated by
the following expression (Böttcher and Schlickeiser 1997; Aharonian et al. 1983)

Q
(γγ )

e± (Ee) = 3

32

cσT

mec2

∫ ∞

γe

dεγ

∫ ∞
εγ

4γe(εγ −γe)
dω
nγ (εγ )

ε3
γ

nph(ω)

ω2

{
4ε2
γ

γe(εγ − γe)

× ln

[
4γeω(εγ − γe)

εγ

]
− 8εγ ω+

2(2εγ ω− 1)ε2
γ

γe(εγ − γe)

−
(

1− 1

εγ ω

)
ε4
γ

γ 2
e (εγ − γe)2

}
. (5.164)

Here εγ =Eγ /mec2 and ω=Eph/mec
2 are the adimensional photon energies. The

spectrum is symmetric around Ee = Eγ /2. For EphEγ � m2
ec

4 the interaction is
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catastrophic: one of the produced particles takes most of the energy of the gamma
ray.
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Chapter 6
Evidence for Black Holes

6.1 Black Holes in Action

Some of the most energetic phenomena in the Universe take place in accreting
sources that host (or are suspected to host) black holes. Naturally, black holes
that span almost ten orders of magnitude in mass, placed in a variety of environ-
ments, and fed with matter from different sources, bring about an incredibly rich
phenomenology. By and large, though, theory and observation point to an unified
description of the dynamics and radiation of inflows/outflows in sources powered
by accretion onto black holes at all scales (e.g. Mirabel and Rodríguez 1998). The
fundamental variables in this description are the accretion rate and the mass (and
possibly the spin) of the black hole (e.g. Fender et al. 2007; Heinz and Sunyaev
2003; Sams et al. 1996). The following sections present a brief account of X-ray bi-
naries, active galactic nuclei, and gamma-ray bursts. Ultra-luminous X-ray sources
are presented later on. The theory of accretion and jets (often with examples and
applications to these types of sources) and some relevant non-thermal radiative pro-
cesses have been extensively developed in previous chapters; here the discussion
shall be restricted to the most fundamental phenomenological aspects.

6.1.1 X-Ray Binaries and Microquasars

X-ray binaries are formed by a compact object (a neutron star1 or a stellar-mass
black hole, also called the primary) in accretion from a non-collapsed star (referred
to as the donor or companion star, or just the secondary). According to the mass
of the donor star XRBs are classified into high-mass and low-mass. In high-mass
XRBs the donor star is an O, B, or Wolf-Rayet star of mass M∗ ∼ 8–20M�. These

1We shall not deal with neutron star XRBs here. See for example Migliari and Fender (2006),
also Migliari et al. (2011) for a comprehensive analysis of the differences and similarities between
neutron star and black hole XRBs.
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Fig. 6.1 A simplified sketch
of a microquasar

stars lose mass mainly through strong winds. Donor stars in low-mass XRBs have
M∗ � 2M�. They are old stars of spectral type B or later, that transfer mass to the
compact object through the overflow of the Roche lobe. Out of the 299 sources cat-
aloged by Liu et al. (2006, 2007), 185 are low-mass and 114 are high-mass XRBs.
The spatial distribution of high-mass XRBs in our galaxy traces the star forming
regions in the spiral arms. This is expected, since the companion star is relatively
young (�107 yr) and should not have departed significantly from its birthplace.
Low-mass X-ray binaries are concentrated towards the center of the galaxy, espe-
cially in the bulge. These systems are old (∼109 yr) and some have migrated from
the galactic plane towards higher latitudes.

Figure 6.1 is a simplified sketch of a X-ray binary. The basic components of
the accretion flow are pictured: the accretion disk, the corona, and the jets. Not all
XRBs launch jets—or perhaps they do and we have not detected them yet. Those X-
ray binaries with jets were named microquasars by Mirabel et al. (1992), alluding
to their striking morphological resemblance to the extragalactic quasars we shall
speak about in the next section. There are about 20 confirmed (with jets imaged at
radio wavelengths) or firm microquasar candidates in our galaxy and one recently
discovered in the galaxy NGC 7793 (Soria et al. 2010).

Microquasars produce two type of outflows: continuous steady jets and discrete
ejections. Continuous jets are observed during the so-called low-hard state (see be-
low), whereas the ejection of blobs occurs during the transition between spectral
states. Jets in microquasars are mildly relativistic, with bulk Lorentz factors �10.
Apparent superluminal motion of the discrete ejections is observed in some sources.
The typical power of microquasars jets is Ljet ∼ 1037–1040 erg s−1. The most pow-
erful inject enough energy in the surrounding medium as to distort it significantly.
Strong signatures of jet-medium interaction are seen in the microquasars SS 433
and Cygnus X-1.
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Black hole X-ray binaries go through different spectral states, classified accord-
ing to the timing and spectral characteristics of the X-ray emission. The four canon-
ical states are (e.g. McClintock and Remillard 2006; Belloni et al. 2011) the low-
hard, high-soft, very high, and quiescence states. Intermediate states with mixed
properties are also observed. These five spectral states can be briefly characterized
as follows:

• Low-hard (LH) state: the X-ray flux follows a hard power-law FX ∝E−α with
α ∼ 0.4–0.9 that cuts off exponentially at ∼100 keV. A fluorescence Fe Kα line
around 6.4 keV is detected in many sources. The thermal emission from the accre-
tion disk is sometimes observed, but peaking at lower energies and less luminous
than in the high-soft state. The presence of steady jets in the LH state is inferred
from the flat/slightly inverted shape of the radio spectrum. The characteristic lu-
minosity of jets in the LH state is 1036–1037 erg s−1.

The canonical model of XRBs in low-hard state postulates that the hard X-rays
are emitted in the hot corona (likely to be accreting in a radiatively inefficient
regime like an ADAF) by Comptonization of photons from an outer accretion
disk. Part of the radiation from the corona is reprocessed in the disk, including
the excitation of Fe atoms that gives rise to the fluorescence line. In some micro-
quasars the radio and X-ray luminosities display a tight correlation of the form
(e.g. Corbel et al. 2003)

Lradio ∝ L0.7
X , (6.1)

what suggests that the jets may contribute or even dominate the X-ray emission.2

• Quiescence state: similar to a faint LH state. The X-ray spectrum is dominated
by a hard power-law of very low luminosity ∼1030–1035 erg s−1.

• Very high (VH) state: the X-ray spectrum is a power-law without indication
of a cutoff up to at least 100 keV. The power-law is steeper than in LH state.
Some sources in VH state show quasi-periodic oscillations (see Sect. 6.5.1). The
role of jets during the VH state is not clear. In some cases the onset of the VH
state coincides with the quenching of the radio emission; in other sources discrete
ejections are observed during the VH state or the transition to it.

• High-soft (HS) state: the spectrum below ∼10 keV is dominated by the thermal
emission of an accretion disk of temperature kTd ∼ 0.5–1 keV. A steep power-
law tail extends into the hard X-rays. The Fe Kα line is broadened, probably
because the disk extends closer to the compact object than in the LH state. The
radio emission is strongly suppressed, suggesting the absence of jets.

• Intermediate states: XRBs spend most time in the four spectral states described
above, but there are also epochs when the characteristics of the X-ray emission
cannot be accounted for purely in terms of one spectral state. In such cases the
source is said to be in an intermediate state. Intermediate states occur, for exam-
ple, during the transition between two of the main spectral states.

2Intending to extend it to AGN, a modified version of Eq. (6.1) that includes the mass of the black
hole was introduced by Merloni et al. (2003) and Falcke et al. (2004). Its validity is not definitely
established.
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The spectral and timing properties of black hole XRBs vary in response to
changes in the mass accretion rate induced by instabilities in the disk, recall
Sect. 4.5.3 and Fig. 4.13. In quiescence the accretion rate is very low, of the or-
der of ṁ ∼ 10−2 in Eddington units. The surroundings of the black hole are filled
by an extended, radiatively very inefficient corona and the disk is quite detached.
The LH state is similar but at slightly large accretion rates, 10−2 � ṁ� 0.1. Con-
tinuous jets are ejected during quiescence and LH state. But the ADAF corona only
exists for accretion rates below a critical value, so as ṁ increases the inner radius of
the disk approaches the black hole. Finally the corona disappears, perhaps expelled
as a relativistic discrete jet, and the system enters the HS state. The radiative spec-
trum is dominated by the thermal emission of the disk plus a power-law from a very
tenuous corona. The typical accretion rate in the HS state is ṁ ≈ 0.1, but values
as large as ṁ ≈ 1 can be achieved during the LH-to-HS transition. This process is
cyclic; eventually the source goes back to the LH state through a low-luminosity
path.

Within the last decade a small number of XRBs have been detected at high
(30 MeV–50 GeV) or very high (>50 GeV) energies, and there are a few other
gamma-ray sources suspected to be XRBs. All the positively identified gamma-ray
binaries are also radio sources and contain a massive companion star of type O or
B. Two of them, Cygnus X-1 (McConnell et al. 2000; Albert et al. 2007; Sabatini
et al. 2010) and Cygnus X-3 (Abdo et al. 2009a; Tavani et al. 2009), are high-mass
microquasars and the others are binaries formed by a Be star and a non-accreting
pulsar. There are two sources, LS 5039 (Paredes et al. 2000; Aharonian et al. 2006;
Abdo et al. 2009c) and LS I +61◦ 303 (Albert et al. 2006; Acciari et al. 2008; Abdo
et al. 2009b), whose nature is not definitely established. They could be pulsar-driven
binaries or microquasars. You can see Dubus (2006) and Romero et al. (2007) for
arguments in favor or each scenario in LS I +61◦ 303.

In pulsar-driven binaries the gamma rays are emitted by particles accelerated at
shocks that develop where the pulsar wind and the decretion disk of the Be star
collide. In high-mass microquasars the gamma-ray emission originates in the in-
teraction of relativistic particles in the jets with the wind of the companion star
via proton-proton collisions and/or inverse Compton scattering of stellar photons
(e.g. Kaufman-Bernadó et al. 2002; Romero and Orellana 2005; Bosch-Ramon et al.
2006). To date, no gamma-ray emission has been observed from a low-mass X-ray
binary although there are a couple of suspects (e.g. Falanga et al. 2010; de Mar-
tino et al. 2013). Their detection is further complicated because in general they are
transient sources. Since donor stars in low-mass XRBs are old and dim, jet-star in-
teractions are not expected to be efficient. Gamma rays in low-mass microquasars
might be created in the interaction of relativistic particles with the matter, radiation,
and magnetic field carried by the jet itself (e.g. Romero and Vila 2008; Vila and
Romero 2010; Vila et al. 2012). In sources both with high-mass and low-mass com-
panions, non-thermal particles in the corona may also inject high-energy photons
(e.g. Romero et al. 2010; Vieyro and Romero 2012).
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Fig. 6.2 The unification scheme of active galactic nuclei. AD, NLR, and BRL stand for accre-
tion disk, narrow line region, and broad line region, respectively; the rest of the abbreviations are
explained in the text. On the radio quiet side the jet is fainter to indicate it is absent

6.1.2 Active Galactic Nuclei

Active galaxies are those that display non-stellar emission in the nucleus; they rep-
resent about 10 % of all galaxies. The electromagnetic radiation from AGN covers
the whole spectrum from radio to gamma rays. The observed fluxes and the dis-
tances determined from the cosmological redshift of spectral lines, allow to infer
that AGN have huge intrinsic luminosities of the order of 1044 erg s−1 and higher.
Variability on short timescales implies that the emission region is compact, whereas
the presence of high-velocity clouds requires that the mass enclosed in that region
is large. The estimated lifetime of some AGN indicates that this mass is most likely
contained in a single object and not a in collection of them (a cluster of stars, for
example). The detection of radio jets in about 10 % of AGN lends support to this
hypothesis.

The current model of active galactic nuclei is conceptually quite simple; a basic
scheme is pictured in Fig. 6.2. They are powered by accretion onto a supermassive
black hole (106–1010M�) at the center of the galaxy. The black hole is surrounded
by a corona and an accretion disk that radiate from the optical through the soft X-
rays. A thick ring of dust and gas (a “dusty torus”) obscures the central region and
emits mostly in the infrared. Clouds orbit the black hole at different distances. A pair
of collimated jets are launched by action of the (rotating) black hole and the disk.
The outflows propagate for distances of tens of kpc and even Mpc.

The strength of this picture is that it explains the great variety of observational
manifestations of AGN in terms of the orientation of the system with respect to the
line of sight. The orientation determines the degree of obscuration and beaming that
affect the radiation in its path to the observer. Before this “unification scheme” was
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settled (e.g. Antonucci 1993; Urry and Padovani 1995), what we now understand
are AGN seen from different sides were thought to be objects of distinct nature.
Because of the historical development of the field there was a proliferation of names
still largely in use today. These include quasars, blazars, BL Lacs, radio galaxies,
type 1 and type 2 Seyfert galaxies, type I and type II Fanaroff-Riley galaxies, and
the list goes on . . .

Active galactic nuclei may be broadly classified based on their emission lines
and radio loudness. At the same power in the optical, radio loud AGN have a radio
power about 3–4 orders of magnitude larger than the radio quiet. They may show
emission lines or not, and if they do the lines may vary in width because of Doppler
broadening. The lines are emitted by recombination of several elements (H, He, C,
O, Fe) in the clouds that orbit the black hole—broad lines in the inner, high-speed
clouds (∼103 km s−1) of the broad-line region, and narrow lines in the outer, slower
clouds (∼102 km s−1) of the narrow-line region.

In sources where the disk is seen nearly edge-on the dusty torus obscures the
central nucleus and only narrow lines are detected. Seyfert 2 (Sy 2) galaxies belong
to this group. Broad lines and the optical-to-X-rays continuum from the nucleus is
observed in sources oriented more face-on. In radio quiet quasars (called as well
quasi-stellar objects, QSO) and Seyfert 1 (Sy 1) galaxies the symmetry axis of the
system makes an angle ∼30◦ with the line of sight, permitting the detection of the
emission from both the narrow and the broad line regions. Radio loud AGN (only
about 10 % of all) have relativistic jets. In radio galaxies the line of sight is basi-
cally perpendicular to the jet axis so the outflows can be appreciated in their whole
extension. If the torus hides the broad line region, it is a narrow line radio galaxy
(NLRG). The synchrotron radio emitting regions in jets of Fanaroff-Ryley (FR) I
and II galaxies display different morphologies. Jets in FR I galaxies are very bright
in the inner regions and faint with the distance to the nucleus; jets in FR II galax-
ies remain practically dark up to the termination region, where the develop huge
radio lobes and hot spots by interaction with the medium. Radio-loud AGN with
broad lines are broad line radio galaxies (BLRG) and radio quasars (also called
quasi-stellar radio sources, QSRS, or quasi-stellar sources). When the jet is pointed
almost along the line of sight we call it a blazar. Blazars are sources of beamed,
highly variable, polarized non-thermal continuum emission. Among blazars are the
BL Lacertae (BL Lac) objects, with very weak or no emission lines at all. Jets in
flat spectrum radio quasars (FSRQ) have radiative properties similar to blazars and
show emission lines. BL Lacs and FSRQ are though to be FR I and FR II galaxies,
respectively, with the jet axis close to the line of sight (�15◦). It is worth mentioning
here that orientation alone cannot account for the radio-loud/radio-quiet dichotomy,
that appears to be a true manifestation of different physical processes going on in
the central engines of AGN that impact on the properties of jets.

Blazars are very interesting objects because of their extreme properties: fast and
high-amplitude variability and polarization, beaming and amplification of the radi-
ation and apparent superluminal motion induced by the relativistic speed of the jets
(Lorentz factors ∼50). The spectral energy distribution of blazars is non-thermal
and covers up to 20 orders of magnitude in frequency from radio to gamma rays.
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Actually, the largest fraction of the identified gamma-ray sources are blazars. They
represent, for instance, 57 % (894 sources) of all entries in the second release of
the catalog of sources detected with the Large Area Telescope (LAT) on board the
satellite Fermi (Nolan et al. 2012).3

The SED of blazars typically presents two peaks—a synchrotron peak at low
energies (up to the infrared/optical) and an inverse Compton peak at MeV-GeV
(and even TeV) energies from the up-scattering of synchrotron or external photons
(e.g. Böttcher 2007). It is clear, then, that jets in AGN are efficient accelerators of
electrons. Relativistic protons, if present, may contribute as well to the gamma-
ray spectrum of blazars and other types of AGN through synchrotron radiation,
proton-proton and proton-photon collisions; see for example the models of Aha-
ronian (2002), Mücke et al. (2003), and Reynoso et al. (2011).

Active galaxies play a fundamental role in modern astrophysics since they are
thought to be the sites of acceleration of the most energetic cosmic rays that ar-
rive to Earth. In 2007, the scientists of the Pierre Auger Observatory released
a renowned work where it was announced that the arrival direction of 18 out
of the 27 cosmic rays with energy >55 EeV4 detected so far was within ∼3◦
from the position in the sky of the nearby (�75 Mpc) AGN listed in certain
catalogs (Abraham et al. 2007). It must be noticed that reconstructing the ori-
gin of cosmic rays from their direction of arrival is not an easy task; it im-
plies the modeling of the propagation of charged energetic particles in the in-
tergalactic and galactic magnetic fields and their interactions. What correlation
studies really test is the degree of anisotropy in the arrival directions. As more
events were collected, however, the significance of the correlation claimed by the
Auger Collaboration washed out; the latest analysis reveal only a weak devia-
tion from isotropy in the direction of arrival of cosmic rays at the highest ener-
gies. The anisotropy hypothesis is also rejected from the results of another cos-
mic ray detector, HiRes, in the northern hemisphere.5 However, both correla-
tion and no correlation claims have low significance levels and await to be con-
firmed.

Any anisotropy in the arrival direction of extragalactic cosmic rays may be due
to a nearby source. An interesting candidate in this regard is the nearest AGN—the
radio galaxy Centaurus A. A clustering of energetic cosmic ray events are detected
from a region of 24◦ around this galaxy. Another suggestive fact is that there are
several pairs of events (separated by less than 5◦) near Cen A, some of them con-
sisting of detections made by different experiments. Of course, one should be able
to explain how the jets of Cen A could accelerated protons or heavier nuclei to the
required energies. Furthermore, Cen A is located in one of the most populated re-
gions in the nearby Universe. It is up to some extent natural to expect that cosmic
rays arrive from that direction although not necessarily from Cen A itself.

3A few radio galaxies, Seyfert galaxies, and other AGN have been detected by Fermi as well.
4EeV stands for “exa electron volt”; 1 EeV= 1018 eV.
5But Auger and HiRes disagree on the composition of cosmic rays.
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Despite the lack of conclusive experimental results and the doubts about the role
Cen A, active galactic nuclei still hold as the most likely accelerators of extragalac-
tic cosmic rays. Perhaps an enlarged version of the Auger Observatory and other
forthcoming cosmic ray detectors (such as the planned JEM-EUSO experiment on
board the International Space Station) will gather enough statistics to unveil their
origin.

6.1.3 Gamma-Ray Bursts

Gamma-ray bursts were discovered in the late 1960s–early 1970s by the Vela se-
ries of satellites, commissioned to spot clandestine detonations of nuclear weapons
on Earth. In the 1990s, the Burst and Transient Source Experiment (BATSE) of the
Compton Gamma-Ray Satellite discovered thousands of GRBs. They were isotrop-
ically distributed in the sky, what suggested a cosmological origin. This was later
confirmed with the first redshift determinations from observations in the optical. On
average, one gamma-ray burst occurs per day in the Universe.

From the distance estimates and accounting for beaming, the photon fluxes mea-
sured from GRBs imply huge luminosities of ∼1050 erg s−1 and a total energy re-
lease of �1051 erg. Moreover, all this energy is liberated in one flash lasting typi-
cally a few seconds. Gamma-ray bursts are one-time events, there is no evidence that
they are recurrent. The bursts have two phases. During the initial prompt stage hard
X-rays and gamma rays up to tens of GeV (typically peaking between∼100 keV and
∼1 MeV) are emitted. The prompt emission is well described by a broken power-
law. Then follows the afterglow, a phase of smoother fading emission in the X-rays,
optical, and radio. The afterglow fades away on timescales of hours to weeks.

The distribution of GRBs according to the duration of the prompt phase is bi-
modal and shows a minimum at about T90 = 2 s, where T90 is defined as the time in
which 90 % of the photons arrive to the detector. The spectrum of short gamma-ray
bursts is harder than that of long gamma-ray bursts, what indicates that the bimodal-
ity is most probably real and not induced by an observational bias. It is thought
that long GRBs are emitted during the collapse of a massive rotating star into a
black hole (e.g. Paczyński 1998; MacFadyen and Woosley 1999). This idea is sup-
ported by the association of long GBRs with star forming regions and in a few cases
with supernovae. Short GRBs, on the other hand, may originate as a product of the
merger of two compact objects to form a stellar-mass black hole (e.g. Eichler et al.
1989; Nakar 2007). Short GRBs take place in host galaxies with varied star for-
mation properties, including low star-forming rates. Although there are few short
GRBs with known redshift, these appear to be nearer than long GRBs and also less
powerful.

Both the merger and the collapse (or collapsar) models involve the release of a
huge amount of gravitational energy by accretion onto the central core. A small part
of this energy is eventually converted into radiation in a “fireball”, an extremely
relativistic collimated outflow expanding outwards with bulk Lorentz factors up to
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Fig. 6.3 A gamma-ray burst in the fireball model

103.6 The jets might be powered by the rotation of the newborn black hole, anni-
hilation of neutrinos emitted in the accretion disk (recall Sect. 4.5.5),7 and/or other
mechanisms. The kinetic energy of the fireball is dissipated as radiation in shocks—
internal shocks (that develop within the outflow as faster shells of material catch up
with slower ones) for the prompt emission and external shocks (collisions with the
external medium) for the afterglow (see Fig. 6.3). Electrons and perhaps protons are
accelerated up to relativistic energies at the sites of the shocks and these emit the
non-thermal radiation.

Neither the central engines nor the jets in GBRs can be resolved observation-
ally. There are, however, some theoretical and observational arguments in favor of
relativistic outflows and beaming in GRBs. The first and immediate argument is
that beaming reduces the energetic budget8—compared to an isotropically emitting
source—required to account for the measured electromagnetic fluxes. The second is
the “compactness” problem. The photon density at fixed energy in the source may
be estimated from the observed flux, variability timescale, and distance. For values
of the parameters typical of GRBs, the photon field turns out to be very dense and
the optical depth for two-photon annihilation as large as τγ γ ∼ 1015 � 1. If this
were so the source would be absolutely self-absorbed and unobservable. The com-
pactness problem disappears if one assumes that the plasma is moving towards the
observer with a large Lorentz factor Γ . Then, in the rest frame of the jet the energy
of the photons and the photon density are lower than we infer. Typically Γ > 100
are required for the source to be optically thin to its own high-energy radiation.

6We only detect the gamma-ray burst (i.e. the prompt emission) when the jet is pointing to us. If the
jet axis is slightly shifted from the line of sight, “orphan” afterglow emission should be detectable,
i.e. radio and optical emission without a preceding gamma-ray burst.
7This process injects electron-positron pairs, ν̄ + ν→ e+ + e−.
8Approximately by a factor θ2

jet/2, where θjet is the opening angle of the jet.
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Beaming and collimation is also compatible with the observation of “achromatic”
breaks, the name given to the simultaneous steepening in the light curve at all ener-
gies. The radiation emitted by a plasma moving at relativistic speeds is beamed into
an angle θ ∼ 1/Γ in the direction of motion. If Γ is very high only a small portion
of the jet’s section is visible. But in the internal/external shock model the outflow
decelerates in the external shocks. As the bulk Lorentz factor decreases and the jets
advances a larger fraction of the emitting region becomes visible. As long as θ < θjet
beamed emission cannot be observationally distinguished form spherical. But even-
tually when Γ < 1/θjet the whole section of the jet becomes visible. An observer
now receives less radiation than she/he would do if the radiation were spherically
symmetric because the observed section increases only because the jet is advancing.
So the light curve begins to decays faster. The jet opening angle can be calculated
from the time of the break. For long GRBs θjet ∼ 5◦–10◦ whereas θjet ∼ 5◦–25◦ for
short GRBs, although the latter estimate is more uncertain due to poor statistics.
Gamma-ray bursts with chromatics breaks and very late breaks (which could imply
large jet opening angles) have been observed.

In the classical fireball model the outflows are matter (not magnetically) dom-
inated; recall from Chap. 5 that a low magnetization is essential for shocks to
develop. Electrons accelerated at the internal shocks radiate the prompt emission
through synchrotron radiation in the locally amplified magnetic field, and perhaps
also synchrotron-self Compton and inverse Compton scattering of thermal photons.
The afterglow radiation is synchrotron emission from electrons accelerated at the
external shocks. If the jet is powered by the rotational energy of the black hole it
is likely that the magnetization remains high and magnetic energy is dissipated by
reconnection, instabilities, or other mechanisms different from shocks. Although
the baryon load (if any) of GRB jets is unknown radiation of hadronic origin has
been also considered, recently in particular to explain the GeV emission from some
GRBs detected with Fermi-LAT. Gamma-ray bursts jets with a content of relativistic
protons should be sources of neutrinos created in proton-photon interactions. Inter-
estingly, neutrino bursts could be expected even in the absence of a burst of radiation
if the jets cannot make it through the stellar envelope in a collapsar. These are called
“choked” gamma-ray bursts. Short gamma-ray bursts and their progenitors must be
as well sources of gravitational radiation.

6.2 Evidence for Stellar-Mass Black Holes

6.2.1 Dynamical Arguments

It is possible to derive from Kepler’s laws an expression that relates the masses of
the two components of a binary system and the inclination angle of the orbital plane.
This is known as the mass function and is given by

f (M)= V
3∗ Porb

2πG
= M3 sin3 i

(M +M∗)2 =
M sin3 i

(1+ q)2 . (6.2)
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Fig. 6.4 Definition of the parameters in the binary mass function. The angle i gives the inclination
of the plane of the orbit with respect to the plane of the sky (perpendicular to the line of sight). The
velocity V∗ is the component along the line of sight of the orbital velocity of M∗ measured where
indicated

Here M and M∗ are the masses of the compact object and the donor star, respec-
tively, q =M/M∗ is the mass ratio, i is the inclination angle of the orbit, Porb is the
orbital period, and V∗ is the semi-amplitude of the donor star’s line-of-sight velocity.
The definitions of i and V∗ are made clear in Fig. 6.4.

The mass function is an interesting quantity because its value can be calculated
from parameters (Porb and V∗) measurable from the light curve of the donor star.
If i and M∗ are independently known the value of M follows directly from that
of f . For our purpose, however, it is enough to notice that the mass function sets an
absolute lower limit to the mass of the compact object:

f (M)≤M, (6.3)

where the equal corresponds to i = 90◦ and q→ 0. The upper limit for the mass of
a neutron star is uncertain, mainly because of the relatively poor knowledge about
the equation of state of matter at extremely high densities. It is presently thought
to be somewhere in the range MNS ∼ 2.9–3.2M� (e.g. Rhoades and Ruffini 1974;
Kalogera and Baym 1996), and up to a∼20–25 % larger if the star is rotating rapidly
(Friedman and Ipser 1987; Cook et al. 1994). A value of f larger than this consti-
tutes a piece of dynamical evidence for the presence of a black hole.

There are more than 20 stellar-mass black hole candidates in binary systems iden-
tified on dynamical grounds (e.g. Remillard and McClintock 2006; Casares 2010;
Özel et al. 2010). In some cases f <MNS, but independent constraints on i or M∗
allow to assure that M >MNS. The first to be discovered and perhaps the most ex-
amined galactic black hole candidate is Cygnus X-1. This is a binary system formed
by a compact object and a massive O-type donor star. According to the latest es-
timates by Orosz et al. (2011) the mass of the compact object in Cygnus X-1 is
M = (14.81± 0.98)M�, far beyond any upper limit for the mass of a neutron star.
Aside a few other exceptions, however, most galactic black hole candidates have
been found in low-mass binaries—particularly in those classified as “X-ray tran-
sients” or “X-ray novae”. These systems spend most of their lives in quiescence
(X-ray luminosity LX � 1033 erg s−1) until some type of instability in the accretion
disk triggers a sudden increase in the accretion rate. Then they enter in outburst,
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radiating intensely in the X rays typically for a few months. The periods of quies-
cence offer an excellent opportunity to determine the orbital parameters from the
observation of the donor star because the optical emission is uncontaminated by
the accretion flow. Very firm galactic black hole candidates have been identified
in X-ray transients, some with mass functions f > 6M� like GRS 1915+105 and
XTE J1118+480. There are other ∼30 transient sources without determination of
the mass of the compact object that are candidates to black hole binaries (e.g. Özel
et al. 2010). The identification is based on the similarities of their X-ray spectrum
with that of dynamically established candidates.

6.2.2 The Search for the Signature of the Event Horizon

The key fact that distinguishes black holes from neutron stars (and from any other
type of collapsed object) is that they do not have a solid surface. Indeed, the definite
proof of the existence of black holes would be the observation of some phenomenon
that unequivocally revealed the presence of the horizon. X-ray binaries harbor ei-
ther neutron stars or black holes,9 so a possible way to search for the signature of
the event horizon is to compare the observational characteristics of both groups of
sources. Below we discuss two proposals based on the study of the X-ray emission
of X-ray transients. The results are appealing but also controversial; you can find a
critical assessment in Abramowicz et al. (2002).

6.2.2.1 The Luminosity of X-Ray Transients in Quiescence

Figure 6.5 shows the X-ray luminosity versus the orbital period for a sample of
X-ray transients in quiescence.10 With the exception of a few outliers, black hole
binaries are systematically much dimmer (10–100 times) than neutron star binaries.

We have already discussed in Chap. 4 that the spectrum of X-ray transients in
low-luminosity states is well described by the ADAF model. Whereas disk accre-
tion is characterized by a luminosity proportional to the accretion rate Ṁ , recall
for example Eq. (4.100), two-temperature ADAFs exist only below a certain value
ṁcrit ∼ 0.01–0.1 (in Eddington units) and display a luminosity L∝ ṁ2. Most of the
gravitational energy of the infalling matter is stored as thermal energy instead of
being radiated. If the accretor is a black hole all this amount of energy is advected
with the flow as it crosses the event horizon and simply disappears for an external

9For simplicity, throughout this chapter we shall use the expression “black hole(s)” implying
“black hole candidate(s)”.
10The orbital period is chosen as a variable because in most systems the accretion rate is expected
to be determined by its value. Black holes and neutron star binaries with similar Porb should have
similar accretion rates (in Eddington units), allowing proper comparison. See the discussion in
Narayan et al. (2002).
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Fig. 6.5 X-ray luminosity as a function of orbital period for black hole (filled symbols) and neutron
star (empty symbols) X-ray transients in quiescence. The triangles indicate upper limits. Two black
hole candidates display luminosities above the expected. However, for one source (GX 339-4) it
is not clear whether it was actually in quiescence. The second case, GS 1354-64, is discussed in
the text. This figure is an updated version of that published in Reynolds and Miller (2011) that
includes the latest data on the source H 1705-250 (Yang et al. 2012). Figure granted by the authors
and reproduced by their permission

observer. It appears reasonable to expect that neutron star X-ray transients in qui-
escence also accrete in the ADAF regime with values of ṁ of the same order. In
this case, however, the thermal energy of the accretion flow does not “disappear”
but must be liberated as matter comes to rest by impacting on the surface of the
neutron star. The total luminosity (the emission of the ADAF plus the energy radi-
ated at the surface of the star) in such systems would be approximately equal to the
blackbody luminosity of a thin disk. Then, if the ADAF model applies both to neu-
tron star and black hole binaries and black holes have an event horizon, neutron star
X-ray transients should be more luminous than black hole candidates in quiescence,
and the latter should show a greater difference in luminosity between outburst and
quiescence.

The plot of luminosity vs. accretion rate in Fig. 6.6 summarizes the theoreti-
cal expectations from this scenario. Narayan et al. (1997, 2002) and García et al.
(2001) suggested to confront them with observations as a way to test the presence
of a horizon in black hole candidates. They analyzed ∼15 sources and found the
data are qualitatively consistent with the model. Figure 6.5 is an updated version of
their original result with more sources included. The authors note, nevertheless, that
if the accretion proceeded purely in the advection-dominated regime the observed
luminosity gap between neutron stars and black holes should be larger. Narayan
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Fig. 6.6 Theoretical luminosity as a function of accretion rate (in units of ṀEdd) for representa-
tive models of black hole and neutron star X-ray transients. For ṁ� 0.1 the accretion flow forms
a thin disk that radiates efficiently as a blackbody. In this regime L ∼ LEdd ∝M , so black holes
are expected to be more luminous than neutrons stars because they are more massive. For ṁ� 0.1
(quiescence state) the accretion flow is advection-dominated. Neutron stars should approximately
display the same radiative efficiency (scaling as L ∝ ṁ), but black holes should be very underlu-
minous (L ∝ ṁ2) if they have a horizon. From Narayan et al. (1997). Reproduced by permission
of the AAS

et al. (2002) argued that some refinements of the ADAF model (e.g. convection
and magnetic field, propeller effect in neutron stars) may improve the quantitative
accord. The interesting point to stress is that the main implication of these studies
(that neutron star binaries should be much brighter than black holes binaries and
that this hints at the existence of an event horizon in the latter) does not depend on
the detailed characteristics of the accretion flow as long as it is radiatively ineffi-
cient.

This interpretation of the gap in X-ray luminosity between neutron star and black
hole binaries in quiescence has been questioned; some alternative models are exam-
ined in Narayan et al. (2002). The criticism mainly focus on the assumption that
the X rays are emitted in an radiatively inefficient accretion flow, and not with
the possible connection to the existence of an event horizon in black hole candi-
dates. Although the data from concrete sources may be explained by other means,
Narayan et al. (2002) argue that the ADAF/event horizon explanation is, among
all, the most general and straightforward. Recently, Reynolds and Miller (2011)
published X-ray data from the black hole binary GS 1354-64 obtained with the
satellite Chandra. The spectral shape is consistent with that of other black hole bi-
naries but the X-ray luminosity is at least one order of magnitude larger than the
expected (see Fig. 6.5), even when allowing for considerable uncertainties in the
distance to the source. Reynolds and Miller (2011) suggest two explanations for the
anomaly. One is that a temporal increase in the accretion rate triggers an also tem-
poral rise in the X-ray emission. Variability or flares have been observed in other
sources, although the luminosities always remained within the expected levels. The
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second explanation is that the actual quiescence X-ray luminosity of GS 1354-64
is steady and as high as observed. Considering that other black hole binaries with
similar orbital period, mass of the black hole, and mass of the donor star are ∼10−3

times fainter, the confirmation of the results could indicate that the compact ob-
ject in GS 1354-64 is accreting in an unknown low-luminosity regime. If this were
the case, the evidence supporting the existence of an event horizon in black hole
X-ray binaries gathered by the methods discussed in this section might turn debat-
able.

6.2.2.2 Type I X-Ray Bursts

There are yet other possible means to obtain evidence for the event horizon in black
hole candidates. One phenomenon in particular ought to occur only in binaries
where the compact object has a solid surface—the so-called Type I X-ray bursts
(e.g. Lewin et al. 1993; Cumming 2004). The origin of the bursts is very well under-
stood: the runaway thermonuclear burning of the accreted matter (mainly Hydrogen
and Helium) accumulated on the surface of the compact object. Type I bursts last
for �10 s and are recurrent; once one burst is over, matter starts to pile up on the
surface again until the temperature and pressure are high enough to trigger nuclear
fusion. The typical time between bursts ranges from hours to some days.

No Type I X-ray bursts have ever been detected in black hole XRBs. Although
suggestive, this fact does not at all confirm the absence of a surface: it could well
happen that black hole candidates do have surfaces but do not burst for some reason.
Not all accreting neutron stars show Type I bursts, for example. Narayan and Heyl
(2002) devised a scheme to prove the presence of an event horizon in black hole
candidates based on the study of Type I X-ray bursts. The idea is to develop a model
for the bursts, apply it to black hole candidates, and show that if they had a surface
they should have bursts. All other phenomena that could inhibit the bursts must be
discarded before concluding that the lack of bursts implies the absence of surface.

Narayan and Heyl (2002, also 2003) studied the evolution of a layer of mat-
ter (Hydrogen, Helium, and some heavier elements) on the surface of a compact
object. The steady-state equations for the composition, temperature, density of the
layer, and the outgoing energy flux are solved, and the stability of the solution under
small perturbations is investigated. If any of the perturbed solutions is unstable it is
assumed that a Type I burst effectively develops.

The model was applied to two types of accreting objects: a typical neutron star
and a putative black hole candidate with a surface. Both differ in their mass and
radius, and also in the value adopted for the temperature Tin at the bottom of the
layer. The latter is related to the accretion luminosity, and therefore lower in black
hole candidates. Several values for the surface mass density at the base of the layer
Σmax = 109–1011 g cm−2 were essayed as well. The results are shown in Fig. 6.7,
where dots indicate unstable states. Instability is predicted within a wide range of
parameters for both neutron stars and black holes with s surface.
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Fig. 6.7 Regions of unstable nuclear burning (dots) as a function of radius (in units of the
Schwarzschild radius) and accretion luminosity (in Eddington units), for a 1.4M� neutron star
(top) and a 10M� black hole candidate with a surface (bottom). Each panel corresponds to a dif-
ferent value of the temperature Tin at the base of the layer. Top, from left to right: 108.5 K, 108 K,
107.5 K. Bottom, from left to right: 107.5 K, 107 K, 106.5 K. From Narayan and Heyl (2002).
Reproduced by permission of the AAS

Two points are worth remarking. First, neutron stars with Laccr � 0.3LEdd should
not have bursts according to the model. This is in agreement with previous theoreti-
cal results and with the observational fact that the neutrons stars that do not burst are
those that accrete at rates near or above the Eddington limit.11 Second, black hole
candidates in X-ray transients should produce Type I X-ray bursts as efficiently as
neutron stars if they had a surface. During the passage from quiescence to the peak
luminosity of and outburst12 and back, the accretion rate sweeps a broad range of
values from � 10−3ṀEdd to ∼ ṀEdd. The path of the system in a plot like those
in Fig. 6.7 should traverse the region of instability almost certainly. Furthermore,
the time between Type I bursts predicted by the model is of about one day whereas
the outbursts last typically for some months. The probability that black hole can-
didates have X-ray bursts but they have eluded detection appears to be practically
ruled out.

The existence of the event horizon in black hole candidates, however, is not at
all proved. The results of Narayan and Heyl (2002) are based on a series of as-
sumptions that might not be valid. It might happen, for instance, that for some rea-
son the instability propagates on the surface and triggers a burst in neutron stars
but not in black hole candidates. Also an unusual chemical composition of the ac-
cretion flow could perhaps suppress the bursts, but this is unlikely to be the case

11These are the so-called “Z” sources. See, however, Kuulkers et al. (1997) and Lin et al. (2009).
12Here we refer to the outbursts described in Sect. 6.2.1, triggered by an increase in the accretion
rate.
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since both neutron stars and black holes accrete from “normal” companions. The
magnetic field is another factor to be considered. Pulsars with very large fields gen-
erally do not burst; it is thought the cause is that the field channels the accretion
flow increasing the local effective accretion rate. No pulsations have ever been ob-
served in black hole candidates, so this scenario may be quite safely discarded.
The effect of rotation (not included in the model), on the other hand, is largely un-
known.

Other exotic possibilities may be imagined to explain the absence of Type I bursts
in black hole candidates. Narayan (2003) analyzes a few of them, more alternatives
are discussed in Abramowicz et al. (2002). Basically, they postulate that what we
identify as black hole candidates are in fact other type of objects with a surface.
Such objects could be made of some strange form of matter and have a surface and
no horizon. Abramowicz et al. (2002) argue that gravastars, for example, would look
much like black holes for a distant observer.13 But since the bursts originate in “nor-
mal” matter accumulated in the surface it is not expected that the inner composition
of the object plays any role, even if the strange matter extends up to near the surface.
Narayan (2003) also consider the case of a compact object made of dark matter, or
a material with similar properties, that only interacts extremely weakly with bary-
onic matter except gravitationally. The accretion flow would concentrate at the core,
but even an object like this might eventually produce bursts. Finally, there is the
possibility of having a naked singularity. Once again, the evidence in favor of the
existence of the event horizon is inviting but not conclusive.

6.3 Evidence for a Supermassive Black Hole at the Galactic
Center

The central few parsecs of the Milky Way are a complex region. There is a dense and
luminous cluster of stars, neutral, ionized, and hot gas, molecular clouds, a young
supernova remnant, and a supermassive black hole candidate. The surrounding gas
and dust makes the galactic center invisible at optical frequencies, but otherwise it
has been detected in the radio, millimeter and submillimeter, infrared, X-ray, and
gamma-ray bands.

A strong radio source was detected in the 1950s towards the galactic center. Since
it was located in the constellation Sagittarius, it was called Sagittarius A (Sgr A).
Within this region Balick and Brown (1974) discovered a compact radio source,
Sagittarius A* (Sgr A*). The position of Sgr A* matches that of the dynamical cen-
ter of the Milky Way and usually the same name is given to the black hole candidate
at the galactic center.

Early evidence of the presence of a compact, “point-like” very massive body at
the galactic center was obtained from the analysis of the motion of neon emission
lines (Lacy et al. 1980). Since then, the case for a supermassive black hole at the

13Gravastars are discussed in Sect. 7.7.
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center of the Milky Way has grown overwhelming. We review some of the latest
astonishing high-quality observations that lead to this conclusion.

6.3.1 Stellar Dynamics

The innermost young B-type stars in the dense cluster at the galactic center are
called “S-stars”. These stars describe highly eccentric elliptical orbits with Sgr A*
at one focus in randomly distributed orbital planes. Some come so close to Sgr A*
(�0.02 pc) that their velocities may be as large as ∼103–104 km s−1 (e.g. Genzel
et al. 2010). The short orbital periods (on human timescales) of S-stars have allowed
to trace partially and even completely the individual paths of more than 20 stars
through high-resolution near infrared observations, thus providing an estimate of
the mass concentrated at the galactic center.

The most accurate results so far have been obtained from the follow-up
of the orbit of the star S0-2 (also called S2, see Fig. 6.8). With a period
of 15.9 yr, S0-2 has been detected along the whole orbit (Ghez et al. 2008;
Gillessen et al. 2009a, 2009b).14 The latests fits of these data yield a mass
M = (4.40± 0.27± 0.5)× 106M� for the black hole at the galactic center (Gilles-
sen et al. 2009a). Because of how it is calculated, the value of the mass depends
on the distance R0 to the galactic center. The first uncertainty assigned to M is sta-
tistical at fixed R0, and the second accounts for the systematic uncertainty in the
determination of R0. The distance to Sgr A* also follows from the fits to the orbits;
Gillessen et al. (2009a) obtain R0 = (8.34± 0.27± 0.5) kpc. The orbit of S0-2 is
compatible with a point mass; any extended mass component within the orbit is at
most∼5 % of the point mass (Gillessen et al. 2009a). The position of the point mass
and that of the radio source Sgr A* agree to ±2 µarcsec.15,16

With the presently available resolution the orbits of S-stars are perfectly fit ap-
plying a Keplerian model to describe their motion. Very precise observations are
being planned to detect relativistic perturbations. A good opportunity will arise in
2018 when S0-2 comes nearest to the galactic center black hole. Besides, future near
infrared interferometers such as GRAVITY (Eisenhauer et al. 2011) are expected to
be able to resolve stars with orbital periods of the order of just one year. For such
short periods the relativistic effects on the orbit should be noticeable; relativistic
precession in particular will be easily measurable.

14The discovery of star S0-102 with a period of only 11.5 yr has been recently reported by Meyer
et al. (2012). S0-102 has also been tracked along the full orbit.
15At 8 kpc, 0.1 arcsec corresponds to ∼1.2× 1016 cm.
16The position of Sgr A* in the near infrared is much more difficult to determine. On the one hand,
establishing an absolute reference frame in the near infrared at the galactic center is inherently
difficult because of the lack of extragalactic reference sources; on the other hand Sgr A* is a very
dim source at these wavelengths. The near infrared position matches the focus of the orbit os S0-2
within 0.01 arcsec. Various near infrared flares also agree with the position of Sgr A* at radio
frequencies.
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Fig. 6.8 Left: orbits of twenty S-stars; from Gillessen et al. (2009a). Reproduced by permission of
the AAS. Right: the orbit of S0-2 reconstructed with data from Gillessen et al. (2009b) and Ghez
et al. (2008); from Gillessen et al. (2009b). Reproduced by permission of the AAS

6.3.2 The Motion of Sgr A*

Reid and Brunthaler (2004, see also Reid 2009) have measured the apparent mo-
tion in the sky of the radio source Sgr A* with respect to the background quasar
J1745-283. Once the apparent motion is corrected to account for the motion of the
Sun, the result is compatible with Sgr A* being virtually at rest at the dynamical
center of the Milky Way as seen from the Sun-Earth system. Its intrinsic residual
velocity perpendicular to the galactic plane is (−0.4± 0.9) km s−1, whereas the
component of the velocity in the galactic plane is (−7.2± 8.5) km s−1. The latter is
much more uncertain because of the also large uncertainties in the orbital velocity
of the Sun in the galactic plane.17

These results may be compared to theoretical expectations and used to constrain
the mass of Sgr A*. The motion of a massive object in the gravitational potential of a
cluster of stars can be modeled as Brownian motion (Chatterjee et al. 2002a, 2002b;
Dorband et al. 2003; Merritt et al. 2007). The system tends to an equilibrium state
in which there is equipartition of kinetic energy among its components. Analytical
calculations and simulations predict that each component of the velocity of an object
of mass 4× 106M� should be ∼0.2 km s−1. The measured velocity of the radio
source Sgr A* then requires that its mass is at least 4× 105M�. It is also almost
discarded that the source Sgr A* is not associated to this large mass for in that case
we should detect its motion around it—except perhaps if it is in an extremely close
orbit, but this again would require the presence of a very compact massive object.

17The components of the velocity of the Sun are ∼220–255 km s−1 and (7.16± 0.38) km s−1 in
and perpendicular to the galactic plane, respectively.
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6.3.3 The Size of Sgr A*

The highest angular resolution measurements of the size of the radio source Sgr
A* are carried out with the technique of Very Large Base Interferometry (VLBI).
The images are affected by the scattering of photons from Sgr A* in the interstellar
medium in a way that the observed radius increases with wavelength as λ2. Correct-
ing for scattering, the intrinsic size of the source is found to decrease with decreas-
ing λ. Only below λ∼ 2 mm scattering effects are negligible and the observations
may reveal the real size of the source. Doeleman et al. (2008) determined an in-
trinsic size of Sgr A* of 37±16

10 µarcsec at λ= 1.3 mm. This corresponds to only
∼3.8RSchw for a 4.4M� black hole. As we shall see in Sect. 6.6 below, the expected
size of the “shadow” (null emission region) of the black hole at the galactic center
is∼4.5–5RSchw, so it is likely that the emission observed by Doeleman et al. (2008)
is shifted from the position of the black hole because of Doppler boosting or that it
originates in a jet (e.g. Falcke and Markoff 2000).

Combining the size at 1.3 mm with the minimum mass of 4× 105M� in-
ferred from the proper motion of Sgr A*, the lower limit for the mass density is
8× 1022M� pc−3. The “density” of a Schwarzschild black hole of 4.3× 106M� is

ρBH = M

(4/3)πR3
Schw

≈ 1.5× 1025M� pc−3. (6.4)

The derived lower limit for the density of Sgr A* is only about 100 times smaller
than the critical value. Although not a proof that Sgr A* harbors a black hole, this
result by itself allows to rule out many alternative models.

6.3.4 Alternatives to the Supermassive Black Hole Model

What could Sgr A* be if not a supermassive black hole?
The first natural option is that the compact concentration of mass at the galac-

tic center is a cluster of very faint (“dark”) stars,18 brown dwarfs, white dwarfs,
or very low-mass black holes for example. This possibility is almost completely
ruled out by the extremely large mass density estimated for Sgr A*. The typical
density of a globular cluster, for example, is ∼105M� pc−3—large, but still many
orders of magnitude below the mass density of Sgr A*. Furthermore, stars in dense
clusters undergo collapse, collisions, and evaporation (continuous escape of stars
due to weak gravitational scattering) that limit their lifetime (e.g. Maoz 1998). As
a consequence, a putative cluster of stars of ∼1M� compatible with the current
observations of the Sgr A* region would live less than 106 yr before evaporating
(Reid 2009). This is even less than the lifetime of some stars in the galactic center.

18Sgr A* itself is very faint in the infrared, so an agglomerate of luminous stars is directly elimi-
nated.
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In order to avoid evaporation for ∼109 yr the mass of the components should be
∼10−3M�, what implies the implausible possibility of a cluster formed by ∼1010

objects similar to Jupiter (Reid 2009).
A more exotic alternative was proposed by Viollier et al. (1993). They intro-

duced the idea of a “fermion ball”, a massive object made of fermions (for ex-
ample massive neutrinos) supported by degeneracy pressure. The maximum mass
of such body depends on the mass of the constituent fermions, but fermion balls
with M ∼ 106–109M� are allowed by the theory. A fermion ball made of neutrinos
within the permitted mass range (∼10–25 keV/c2) and with the total mass of the
black hole candidate in the galactic center, however, would have a radius ∼15 light
days, much larger than the pericenter (point of closest approach) distance of S0-2
and other S-stars (Genzel et al. 2010). Fermion ball models as an explanation for
the phenomena at the galactic center are nowadays almost excluded.

A model in the same spirit is that of Torres et al. (2000) who considered a “boson
star” as an alternative to a black hole. Boson stars (see Liebling and Palenzuela 2012
for a recent review) are objects made of non-baryonic bosons that interact between
them only gravitationally; they have no horizon, no singularity, and no solid surface.
The radius of a boson star is only slightly larger than the radius of the event horizon
of a black hole of the same mass. Supermassive boson stars are allowed by the
model depending on the type of boson and their interactions. As an alternative to a
black hole, a drawback of this scenario is that boson stars could collapse to a black
hole should baryonic matter be added onto them by accretion (although Torres et al.
2000 discuss some ways to circumvent it). Furthermore, even though boson stars
themselves do not have a solid surface, the accreted matter should cluster at its
center eventually providing a surface where the accretion flow would come to rest.
The liberation of the kinetic energy of the accretion flow should lead to thermal
infrared emission—just as discussed for X-ray binaries in Sect. 6.2.2.1—but this is
not observed. Actually, Broderick and Narayan (2006) and Broderick et al. (2009a)
have argued for the presence of an event horizon in Sgr A* on these grounds.

6.4 Evidence for Extragalactic Supermassive Black Holes

It is nowadays thought that supermassive black holes lie at the center of every
galaxy, whether active or not. Early speculations arose with the discovery of quasars.
The huge power emitted from these sources appeared hard to be explained if not by
accretion onto the deep potential well of a massive object. We have seen that an ac-
cretion flow may radiate away as much as 50 % of its gravitational energy—a really
efficacious process compared to nuclear fusion that provides only ∼0.8 % of effi-
ciency. Furthermore, the mass and density required to explain the power of quasars
through nuclear reactions are so large that such a system would not remain stable
during a physically significant time span. Yet another key characteristic of some
active galactic nuclei, the ejection of collimated bipolar jets, suggests the presence
of a spinning compact object operating as an “engine” that powers the outflows.
A supermassive Kerr black hole naturally fits in this picture.
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Evidence for the existence of supermassive black holes in the nuclei of other
galaxies is searched largely in the same manner than in the Milky Way: the mass
and the size of the gravitating center are measured (usually by observing the motion
of objects in its environments) and alternatives are eliminated based on the result.
The large distances involved call for the highest instrumental angular resolutions
available if one desires to inspect the inner circumnuclear regions of the galaxies.
The constraints imposed on mass and size are thus, in general, less stringent than for
the black hole at the center of our galaxy, although under favorable conditions some
very strong extragalactic black hole candidates have been identified. Additionally,
the X-ray emission from the zones of the accretion flow under strong gravitational
field might carry precious information about the nature of the compact object—even
allowing to determine its spin.

6.4.1 Stellar and Gas Dynamics

The gravitational attraction of a black hole of mass M in the center of a galaxy
effectively dominates the dynamics of matter around it inside a sphere of influence
of radius roughly given by

Rinfl = GM
σ 2

≈ 4×
(

M

107M�

)(
100 km s−1

σ

)2

pc. (6.5)

The variable σ is the velocity dispersion; it is the statistical dispersion (standard de-
viation of the velocity distribution) of line-of-sight velocities about the mean value
for the objects in the region of interest. Inside this sphere stars and gas behave ap-
proximately as “test particles” orbiting the black hole.

The velocities of single stars in the nuclei of nearby galaxies are measured from
the profiles of emission or absorption lines from the stellar atmospheres. Inferring
the mass of the black hole from these data in not straightforward because the motion
of stars is, in reality, influenced as well by the gravity of the rest of the galaxy. The
value of M follows from fitting the data to models of orbits under the gravitational
potential of a point mass plus a distribution of stars, dark matter, etc. Nevertheless,
many robust mass determinations have been obtained by this method specially since
the commissioning of the Hubble Space Telescope. The most massive black holes
known so far have been recently discovered based on the motion of orbiting stars.
They occupy the centers of the galaxies NGC 3842 and NGC 4889 with masses
∼9.7 × 109M� and ∼2.1 × 1010M� (McConnell et al. 2011), respectively, and
NGC 1277 with a mass of ∼1.7× 1010M� (van den Bosch et al. 2012).

Whereas the motion of stars is exclusively determined by gravitation, gas is sub-
ject also to pressure gradients, radiation pressure, and viscous forces. The motion
of gas, however, can probe shorter distances to the black hole candidate than stars.
An additional advantage is that gas is usually distributed in a disk; this partially
eliminates uncertainties related to the de-projection of the measured velocities.
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The firmest candidate to host a supermassive black hole in its nucleus, along-
side the Milky Way, is the spiral galaxy NGC 4258. Radio VLBI observations by
Miyoshi et al. (1995) revealed the presence of clouds containing water masers in
the accretion disk (viewed nearly edge-on from Earth) around the center of this
galaxy. Masers are the analog of lasers in the microwave band—they emit by popu-
lation inversion although astrophysical masers are largely incoherent. In the case of
water vapor, the maser emission corresponds to the rotational transition 616–523 at
22.23508 GHz (λ= 1.35 cm).

The motion of the clouds in the accretion disk of NGC 4258 perfectly fits Kep-
lerian circular orbits, the innermost with a radius of only 0.13 pc and a tangential
velocity of ∼103 km s−1. The mass of the gravitating center was determined to be
3.6× 107M�. Such a large mass contained in a region that compact amounts to a
density of ∼109M� pc−3. This almost certainly eliminates the possibility that there
is a dense star cluster at the dynamical center of NGC 4258. Although more ex-
otic alternatives cannot be completely discarded, the huge mass density is strong
evidence of the presence of a black hole.

The masses of a few other supermassive black hole candidates have been es-
timated studying the motion of water masers, see for instance Greenhill et al.
(1996) for NGC 1068 (∼1.5 × 107M�), Kuo et al. (2011, six active galactic nu-
clei with mass 0.75–6.5×107M�), and recently Yamauchi et al. (2012) for IC 2560
(∼3.5× 106M�). Despite its success, the applicability of this technique is limited:
on the one hand because the detection of maser emission is rare, and on the other
hand because to be profitable it demands rather special observing conditions, such
that the accretion disk is viewed almost edge-on. Besides, the velocity profile of
masers sometimes depart from Keplerian suggesting that the gas moves under the
gravitational influence of something else than a point mass. Values of mass cal-
culated from the observational data in such cases are model-dependent and less
reliable.

Another compelling case for a supermassive black hole is that of the nearby radio
galaxy M87. The nucleus of M87 is surrounded by a disk of ionized gas. Macchetto
et al. (1997) measured the rotation curve of the inner disk, at only ∼5 pc from the
dynamical center of the galaxy, from the emission line of Oxygen at λ= 3727 Å.
Their best-fit model predicts that the gas forms a thin Keplerian disk around a
∼3.2× 109M� mass compressed within a region of 3.5 pc of radius. The implied
mass density is ∼2 × 107M� pc−3, two orders of magnitude larger than that of
dense stellar clusters.

To close our discussion, we briefly mention another kinematic technique to find
the mass of black hole candidates in galaxies, called reverberation mapping (e.g.
Peterson 1993). It is based on the analysis of the emission from the clouds in the
broad line region. The velocity vBLR of the clouds is measured from the Doppler
broadening of the lines. The temporal variability of the continuum emission from
the galactic core (the radiation that illuminates the clouds) is followed after a time
lag by correspondent variability in the line emission. The retardation is equal to
the travel time of light from the core to the clouds, so the distance of the clouds
to the center of the galaxy is approximately RBLR ∼ c!t . An estimate of the mass
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of the black hole then follows from the Virial Theorem,19 M ∼ RBLRv
2
BLR/G. An

advantage of the reverberation mapping method is that, being independent of the
instrumental spatial resolution (the broad line region is never resolved with current
telescopes), it may be applied to very distant galaxies (although it could take many
years to collect the necessary data!).

6.4.2 Scaling Relations

When the available angular resolution is not enough to trace orbits of single stars
(because the galaxy is very distant, for instance) the motion of groups of stars may
be used to estimate the mass of black hole candidates in galactic nuclei. In some
types of galaxies (ellipticals or with an spheroid) a correlation of the form

log

(
M

M�

)
= α+ β log

(
σ

200 km s−1

)
(6.6)

between the mass of the black hole candidate and the velocity dispersion σ in the
bulge was discovered by Ferrarese and Merritt (2000) and Gebhardt et al. (2000).
The M − σ correlation is thought to reflect the history of joint evolution of the
supermassive black holes and its surroundings. The values of α and β have varied
with time as more systems were added to the sample; according to the latest fit by
McConnell and Ma (2013), α = (8.33± 0.05) and β = (5.57± 0.33); see Fig. 6.9.

TheM–σ relation is not usually used to calculate black hole masses from scratch
but just as a proxy; it is useful to normalize or as a consistency check for the values
obtained by other methods. Notice, however, that the M–σ correlation underpre-
dicts the mass of some the most massive (including the newly discovered) and less
massive black hole candidates. The impact of these “outliers” on the interpretation
of the M–σ is yet not clear.

The mass of supermassive black holes is also known to correlate with other prop-
erties of the host galaxy. The most frequently considered are the correlation between
the black hole mass and the luminosity (M–Lbulge relation) and the mass (M–Mbulge
relation) of the galactic bulge.

6.4.3 Fluorescense X-Ray Lines

The dynamics of stars and gas disclose the action of the black holes’s gravitational
attraction at distances of hundreds or thousands of gravitational radii. That far from

19The Virial Theorem states that in a system of particles that interact through a potential of the form
∝ 1/r , the total time-averaged potential energy 〈U 〉 and kinetic energy 〈T 〉 satisfy 2〈T 〉+ 〈U 〉 = 0
in equilibrium state.
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Fig. 6.9 Mass of the black hole candidate as a function of velocity dispersion for a sample of
72 galaxies. The masses were estimated from stellar orbits, gas dynamics, and maser emission
in the galaxies marked with stars, circles, and triangles, respectively. “BCG” stands for “bright
cluster galaxy”. The dotted black line is the fit to the whole sample, the red dotted line only to the
early-type galaxies, and the blue dashed-dotted line only to the late-type galaxies. From McConnell
and Ma (2013). Reproduced by permission of the AAS

the black hole, as we have seen, the motion of these “test particles” (at least the part
attributed to the presence of the black hole) is almost perfectly Keplerian. Accretion
disks, however, may extend up to the last stable orbit that is only a few gravitational
radii in size. Any radiation emitted from this region must be necessarily affected by
the strong gravitational field of the black hole.

We have discussed in Chap. 4 how the accretion flow in the immediate vicinities
of a compact object “inflates” to form a corona of very hot plasma that emits non-
thermal radiation via Comptonization of photons from the accretion disk. A fraction
of the scattered photons may impinge on the disk and trigger the emission of lines
from ionized atoms. The strongest of the observed lines is the iron Kα fluorescence
line at ∼6.4 keV (X-rays) corresponding to the electron transition 2p→ 1s.

Far from being sharp, the profile of the line is deeply distorted by a number
of effects as seen in Fig. 6.10. To begin with the disk is rotating, so the emission
from the approaching side with respect to the observer appears blueshifted and that
from the receding side redshifted. This type of Doppler broadening is present even
in Newtonian gravity. Depending on the inclination of the disk with respect to the
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Fig. 6.10 Modifications in the profile of an emission line induced by gravitational and kinematic
effects. The emissivity (in arbitrary units) is plotted as a function of the ratio of the observed to the
emitted frequency. Adapted from Fabian et al. (2000)

line of sight, the profile may display two peaks. Also on a degree depending on
the inclination, the intensity of the blue wing is amplified by relativistic beaming
because the velocity of matter in the inner disk is an appreciable fraction of the
speed of light. The third effect that modifies the shape of the line is the gravitational
redshift: it diminishes its intensity and shifts it to lower photon energies. The overall
result is a broad and skewed line profile.

The first clear detection of a distorted iron line from an extragalactic source20

was made by Tanaka et al. (1995) in the galaxy MCG-6-30-15, one of the bright-
est AGN in X rays. Later observations showed that the line was so broadened that
it must originate in material closer than 3RSchw to the black hole. This implies
that either the black hole is rapidly spinning or that the line is emitted by mate-
rial already plunging onto the black hole. Accepting the hypothesis of a Kerr black
hole, its spin parameter must be a∗ > 0.9. There is always of course the possibil-
ity that our modeling of the accretion flow is wrong and the accretion disk does
not extend to the last stable orbit. However, lately Fabian et al. (2009, 2012) de-
tected reverberation associated to the iron line emission in the AGN 1H0707-495.
The variability pattern of the line emission lags ∼30 s behind the power-law con-
tinuum due to the difference in the lengths of the paths traversed by the photons
that directly leave the corona and those reflected in the disk. For the mass of the
black hole candidate in 1H0707-495 (2 × 106M�) this time delay corresponds to
∼2Rgrav, implying that the part of the corona that irradiates the disk is very close
to the black hole and above the inner accretion disk. Clearly, X-ray spectroscopy
is a powerful tool to explore very close to black holes and it is encouraging and
suggestive that the line profiles largely agree with the predictions of General Rela-
tivity.

20Iron lines are also detected in galactic X-ray binaries.
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6.5 Evidence for Intermediate-Mass Black Holes

6.5.1 Ultra-luminous X-Ray Sources

As we showed in Sect. 4.2.2, there is a limit to the maximum isotropic luminosity
of a source accreting spherically. This is the Eddington luminosity,

LEdd ≈ 1.3× 1038
(
M

M�

)
erg s−1, (6.7)

where M is the mass of the accretor. The radiation pressure on the infalling matter
would halt accretion if the luminosity were larger than this limit. The Eddington
luminosity of the most massive stellar-mass black holes (∼20M�) is some times
1039 erg s−1.

Ultra-luminous X-ray sources (ULXs; see e.g. Fabbiano 2004; Mushotzky 2004;
Soria et al. 2005, and Feng and Soria 2011 for reviews) are usually defined as those
with X-ray luminosities 1039 erg s−1 ≤ LX � 1041 erg s−1. Since they are brighter
than accreting stellar-mass black holes but less luminous than active galactic nuclei,
sometimes they are also called intermediate-luminosity X-ray objects. The nature of
ULXs is unknown and subject to speculation and debate. A number of alternatives
have been proposed, and a few and exciting appear plausible.

All ULXs detected so far are outside the Milky Way. They are generally lo-
cated off the centers of the galaxies; this rules out the possibility that they are low-
luminosity AGN. For the same reason they cannot be underluminous accreting su-
permassive black holes: unless very far away, such an object would fall to the center
of its host galaxy due to dynamical friction (e.g. Binney and Tremaine 1987) in less
than a Hubble time.

The idea that ULXs are accreting black hole binaries naturally suggests itself and
some observational results lend support to the hypothesis. One is the variability (on
timescales of years to hours and periodic in a few cases, e.g. Liu et al. 2002; Han
et al. 2012), and the other is that some ULXs show spectral components (power-law
and thermal) and transitions between soft and hard X-ray states similar (although
far from identical) to the observed in stellar-mass black hole X-ray binaries (e.g.
Feng and Kaaret 2009; Soria 2011). Now, if we assume that ULXs are powered
by accretion and that they radiate X-rays isotropically below or at the Eddington
luminosity, the black hole must be of intermediate mass.21

Isotropic emission from the accretion flow onto an intermediate-mass black hole
is, nonetheless, not the only way to explain ULXs. Begelman (2002), for example,
has proposed that ULXs are stellar-mass XRBs that radiate isotropically above their

21The existence of IMBHs in binaries, though, poses theoretical difficulties since no known binary
evolutionary path leads to such system. The black hole could have been born isolated and later
captured a companion (e.g. Hopman et al. 2004), but in this case all ULXs today should be found
in globular or dense star clusters and most are not. Because of their large mass it is also unlikely
that IMHBs have been born in clusters but later ejected (e.g. Miller and Hamilton 2002).
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Eddington limit via a radiation pressure dominated accretion disk. King et al. (2001)
conjectured that ULXs are XRBs with high-mass donor stars going through a par-
ticular transient phase of their evolution, characterized by a super-Eddington mass
transfer rate on thermal timescales. This is likely to occur in all high-mass XRBs
after the wind accretion phase ends. The large luminosities of ULXs could be ex-
plained if the emission from the accretion disk in such system were not isotropic
but modestly beamed. In line with this idea, Körding et al. (2002) suggested that
ULXs might be stellar-mass black hole XRBs that emit highly beamed radiation in
relativistic jets. Indeed, radio emission compatible with synchrotron radiation from
a jet has been detected in at least two ULXs (Webb et al. 2012; Kaaret et al. 2003). It
cannot be excluded, of course, that the jets are actually launched from an accreting
intermediate-mass black hole.

Which is, then, the evidence for intermediate-mass black holes we have gathered
from ultra-luminous X-ray sources? Here are the most relevant facts.

• Dynamical constraints. Measuring the mass of the compact objects would be
the strongest argument in favor of the existence of intermediate-mass black holes
in ultra-luminous X-ray sources. Up to date there are only ambiguous estimates,
mostly because applying the method of the mass function to ULXs is compli-
cated. Although there are many ULXs with optical counterparts, they are too
distant to measure their radial velocities from absorption lines. The radial veloc-
ity may be measured from the profiles of emission lines as well, but in ULXs the
spectrum is expected to be contaminated with emission lines from the X-ray irra-
diated outer parts of the accretion disk. Fortunately, these lines emitted in the disk
are useful since they provide information about the radial velocity semi-amplitude
Vc of the compact object. Then, an equivalent form of the mass function

f (M∗)= V
3
c Porb

2πG
= M3∗ sin3 i

(M∗ +Mc)2
(6.8)

may be applied to set limits on the mass of the black hole and the donor star if
the orbital parameters are known. Recently, Liu et al. (2012) performed fits to the
optical light curve of the ULX NGC 1313 X-2—the only with measured orbital
period and an estimated value for Vc. Allowing for quite large variations in Vc

around the measured value ∼100 km s−1, they obtain acceptable fits for black
hole masses between a few tens and more than a thousand solar masses. This
is too uncertain to draw any conclusion. Other attempts on the same basis have
yielded similar results, see for instance Roberts et al. (2011). The first dynamical
determination of the mass of the black hole in an ULX still awaits.

• Temperature of the innermost accretion disk. In general, the X-ray spectrum of
ULXs is dominated by single a power-law component. An excess at low energies
observed in some sources has been interpreted as the thermal emission from an
accretion disk. Adopting the standard model of a thin disk that radiates as a black-
body, from direct manipulation of the equations it follows that (e.g. Makishima
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et al. 2000)

kTin ≈ 1.2α1/2
(
κ

1.7

)(
ξ

0.41

)1/2(
Ld

LEdd

)1/4(
M

10M�

)−1/4

keV. (6.9)

Here Tin is the maximum temperature of the disk, Rin = α3RSchw its inner ra-
dius, Ld its bolometric luminosity, ξ is a factor related to the boundary condition
assumed at Rin,22 and κ (called the hardening factor) is the ratio of the color
(thermal) temperature to the effective temperature of the disk. The value of Tin
may be obtained fitting the observational data, in which case Eq. (6.9) provides an
estimate of the mass of the accretor. Notice that standard accretion disks around
intermediate-mass black holes should be colder than disks around stellar-mass
black holes (kT ∼ 1 keV).

The method has been applied with uneven success. There is not a solid un-
derstanding of the origin of the X-ray emission in the different spectral states
of ULXs, so the results are model-dependent and often more than one model
can fit the data. In some ULX the addition of a thermal component with
kTin ∼ 0.17–0.3 keV to a power-law significantly improves the goodness of
the fits (e.g. Miller et al. 2003, 2004). If the disk extends up to the last sta-
ble orbit of a Schwarzschild black hole, an intermediate-mass black hole with
M ∼ 102–104M� is implied. The spectrum of other ULXs, however, may be suc-
cessfully fit only with a thin disk model. In seven sources modeled in this way by
Makishima et al. (2000), for example, the best-fit inner temperature turned out to
be kTin ∼ 1.0–1.8 keV. This is too high for a disk that continues up to the last
stable orbit of an intermediate-mass black hole—it is in fact of the order of the
temperatures observed during the high state of stellar-mass black hole binaries.
Makishima et al. (2000) suggested that the results could be reconciled if the black
hole was rotating, in which case the last stable orbit would have a smaller radius
and a larger temperature. Nevertheless, the discovery that the disk luminosity and
the inner disk temperature do not follow the relation Ld ∝ T 4

in characteristic of a
thermal spectrum (e.g. Mizuno et al. 2001; Feng and Kaaret 2007b), weakens the
interpretation of the soft excess as simply the emission from a standard accretion
disk.

Also the supposition that the inner disk radius coincides with the innermost
stable orbit of the black hole should be considered with care. The thermal com-
ponent in most ULXs carries only a small fraction of the power, the emission
being largely dominated by the non thermal power-law. It is likely that, as in
stellar-mass black holes binaries, the immediate surroundings of the compact ob-
ject are filled with an ADAF-like corona. The inner radius of the thin disk could
be much larger than assumed, invalidating the results of the fits. There are a cou-
ple of very luminous ULXs, however, that settle to a thermal-dominated state with
only a power-law tail in the X-ray spectrum (e.g. Feng and Kaaret 2010). Davis

22When the torque is taken to be zero at Rin, the maximum temperature is not achieved at the disk
inner edge but at a slightly larger radius.
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et al. (2011) have studied one of them, the source HLX-1. They fit the thermal
component applying a relativistic disk model that allows for spinning black holes.
Accounting for uncertainties in the values of the various parameters, they obtain
3× 103M� �M � 105M�.

• No beaming. Evidence that ULXs radiate isotropically (without beaming) would
support the argument in favor of an accreting intermediate-mass black hole.
Isotropic emission in some ULXs is indeed inferred from the properties of the
surrounding medium. Several ULXs are associated with expanding bubbles or
emission-line optical nebulae that appear to be powered by the isotropic (or
at most modestly beamed) X-ray and UV emission of the accretion flows (e.g.
Pakull and Mirioni 2002; Kaaret et al. 2004; Kaaret and Corbel 2009; Cseh et al.
2012). In one source, the ULX IC 342 X-1, a synchrotron radio nebula is detected
as well (Cseh et al. 2012). Both in the optical and radio bands the shape of the
nebula is elongated, suggesting that it is being inflated by a jet outflow. A similar
mechanism is known to be in action in the microquasars SS433 (and at smaller
scale in Cygnus X-1) in our galaxy and S26 in the galaxy NGC 7793.

• Quasi-periodic oscillations. Quasi-periodic oscillations (QPOs; e.g. van der
Klis 2005, 2006) are finite-width peaks in the power density spectrum (i.e. the
squared magnitude of the Fourier transform of the X-ray flux as a function of
time) of a source. Quasi-periodic oscillations with frequencies from Hz to kHz are
observed in black hole and neutron star X-ray binaries. Many models have been
developed to explain QPOs; they are usually associated to some of the character-
istic frequencies (or beats between them) of the system, such as the orbital fre-
quency of the accretion disk near the inner radius and the spin of the compact ob-
ject, or to oscillations in the disk. Quasi-periodic oscillations peaked at frequen-
cies from ∼0.1–100 mHz have been identified in some ULXs (e.g. Strohmayer
and Mushotzky 2003; Liu et al. 2005; Feng and Kaaret 2007a; Rao et al. 2010).
The detection of QPOs and the long variability timescales (compared to XRBs)
favor the hypothesis of disk accretion (no beaming) onto an intermediate-mass
black hole.

There is general agreement that the existence of intermediate-mass black holes in
ULXs is far from being established. It is likely that ULXs are, in fact, a population
composed of various types of sources. Among them, the strongest intermediate-
mass black hole candidates are found in the brightest ULXs. These sources have
X-ray luminosities (LX ∼ 1041 erg s−1, e.g. Sutton et al. 2012) too many orders of
magnitude above the Eddington limit as to be stellar-mass black hole X-ray binaries,
even allowing for beaming.

6.6 What Comes Next

We have reviewed part of the enormous, almost overwhelming, corpus of data that
suggests that the compact objects that lie at the centers of galaxies, in some X-ray
binaries, and perhaps in a fraction of ultra-luminous X-ray sources, are black holes.
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Most of this evidence, though, is indirect, does not probe the strong field regime,
and may even sometimes be accounted for alleging the presence of other types of
(exotic) objects. The main goal for the near future is to prove that the objects we
identify as black hole have indeed the properties predicted by the relativistic theory
of gravitation, the key feature being the event horizon. It is hard to say if the final,
definite proof will ever be find; after all black holes should be black. In the worst of
the cases, however, the phenomena we shall describe in the next sections will serve
as spectacular tests of General Relativity.

6.6.1 Imaging the Shadow of a Black Hole

Photons emitted by a source of large angular size placed behind a black hole will
be deflected by the strong gravitational field. Those with the smallest impact param-
eters, however, will not be able to pass by and will be trapped by the black hole.
An astonished observer contemplating that part of the sky would see a black spot
of radius somewhat larger than that of the event horizon around the position of the
black hole. This dark zone is called the “shadow” of the black hole.

It was Bardeen in the 1970’s who considered the observational appearance of a
Schwarzschild black hole in front of a planar radiating source (Bardeen 1973, 1974).
He showed that the diameter of the shadow is only

√
27∼ 5.2 Schwarzschild radii.

If the black hole is spinning the shadow departs from circular because prograde
photons can reach closer to the black hole than retrograde photons. The contour
of the shadow also depends on the inclination of the observer’s line of sight with
respect to the rotation axis of the black hole.

Astrophysical black holes are as a rule surrounded by a rich radiating environ-
ment.23 Falcke et al. (2000, but see already Luminet 1979) presented realistic im-
ages of the appearance of Sgr A* when illuminated by the radiation of an accretion
flow. Using a general relativistic ray-tracing code, they calculated the shadows of
Kerr and Schwarzschild black holes for two configuration of optically thin plasma:
quasi-spherical in free fall and purely rotating spherical shells with the equatorial
Keplerian frequency. To asses the effect of instrumental limitations, they also sim-
ulated the images as would be obtained with a putative VLBI array at λ= 0.6 mm
and λ= 1.3. The results are shown in Fig. 6.11.

The dip in the intensity is clear in both cases, although much deeper for the Kerr
black hole. The effective radius of the shadow is ∼10Rgrav (∼30 µarcsec), largely
independent of the spin. Notice the change in the simulated VLBI images with the
observing wavelength. At 1.3 mm the effect is almost washed out, but it is clearly
evidenced already at 0.6 mm. Recently, other authors have simulated the appearance
of Sgr A* in mm and sub-mm wavelengths with more sophisticated models of the
accretion flow, see for example Broderick and Loeb (2006), Broderick et al. (2009b,

23Paczyński (1986) considered the possibility of detecting the shadow of black holes produced by
the cosmic microwave background. This might be a way to spot isolated black holes.
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Fig. 6.11 Images of a Kerr black hole with a∗ = 0.998 (upper row) and a Schwarzschild black
hole (bottom row). The radiating plasma is in free fall and rotating in spherical shells, respectively.
Panels b and e, and c and f are simulated VLBI images at 0.6 mm and 1.3 mm, respectively. The
curves show the intensity as a function of distance to the black hole normalized to its gravitational
radius. The mass and distance to the black hole are those of Sgr A* and the viewing angle is 45◦
with respect to the rotation axis when it corresponds. From Falcke et al. (2000). Reproduced by
permission of the AAS

2011), Moscibrodzka et al. (2009), Dexter and Fragile (2011), Shcherbakov et al.
(2012). The goal is to study how the shadow depends on the characteristic parame-
ters of the black hole (mass and spin) and the accretion flow (e.g. tilt of the accretion
disk, presence of hot spots). Also Broderick and Narayan (2006) have investigated
how the shadow would look like if Sgr A* were not a black hole but a compact
object with a solid surface accreting in a RIAF regime.

The best prospects of imaging the shadow are offered by supermassive black
holes, in particular in our galaxy and in M87 (see Fig. 6.12). The angular resolution
required to observe these gravitational effects is of the order of the µarcsec. This is
within the capabilities of imminently available terrestrial VLBI arrays and space-
borne telescopes.

The Event Horizon Telescope24 is a project to combine existing and planned mm
and sub-mm telescopes into a worldwide VLBI array. Among its prior science goals
is to image the shadows of the black holes in Sgr A* and M87 and the accretion flow
in their surroundings. The best angular resolution achieved up to date with the cur-
rent configuration of the Event Horizon Telescope is 60 µarcsec, but this is expected
to improve substantially by adding more telescopes to enlarge the baseline and by

24www.eventhorizontelescope.com.

http://www.eventhorizontelescope.com


6.6 What Comes Next 255

Fig. 6.12 Simulated VLBI image at 0.87 mm of a force-free jet launched from the supermassive
black hole in the radio galaxy M87. Models M0 and M1 correspond to a Kerr black hole with
a∗ = 0.998 and model M2 to a Schwarzschild black hole. The ellipses in the left corner are the
estimated beam size of different arrays of antennas. From Broderick and Loeb (2009). Reproduced
by permission of the AAS

moving to higher frequencies. One of the extensions of the array, with baseline join-
ing France and the South Pole, will provide an angular resolution of 15 µarcsec at
345 GHz (∼8.5 mm). This is just 1.5RSchw radii of Sgr A*!

Another interferometer that will achieve sufficiently small angular resolutions
to observe close to supermassive black holes is the space-based RadioAstron,25 an
international mission led by Russia. This interferometer is composed by a 10 m
radiotelescope on board the Spacecraft Spectr-R (launched in July 2011) working
together with radiotelescopes on Earth. It is expected to reach an angular resolutions
of some µarcsec at cm wavelengths.

6.6.2 Prospects of Detecting Gravitational Waves

We have already described gravitational waves as solutions of the linearized Ein-
stein’s equations in Sect. 1.11. Is there any hope of detecting them? It seems we are
indeed approaching to it.

There are plenty of sources of gravitational waves of all wavelengths in the Uni-
verse. Figure 6.13 shows a summary of them together with the appropriate detection
techniques in each frequency range. We shall come to the detectors later; it suffices
to say now that the search is one for extremely weak signals and demands incred-
ible instrumental precision. The key to the detection of gravitational waves is the
evolution of the waveform with time, a property that uniquely discloses its origin.

Figure 6.14 is a cartoon of the phases of the merger of two black holes and
the gravitational wave signal expected from the process. While the black holes are
well separated the wave is approximately sinusoidal, of constant amplitude and at
the orbital frequency. But as they rapidly inspiral towards each other the frequency
and the amplitude of the wave rise creating a “chirp” signal. The two black holes

25http://www.asc.rssi.ru/radioastron.

http://www.asc.rssi.ru/radioastron
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Fig. 6.13 Sources of gravitational waves and detection techniques appropriate to each frequency
range. Reprinted with permission from Centrella (2011). Copyright 2011, American Institute of
Physics

Fig. 6.14 Spectrum of
gravitational waves emitted
during the merger of two
black holes. Reprinted with
permission from Baumgarte
(2006). Copyright 2006,
American Institute of Physics

finally merger to form a single “excited” one that dissipates energy (“rings down”)
by emitting gravitational waves until it settles to the steady state. The calculation
of the gravitational wave spectrum from each stage is carried out analytically under
some approximations or directly through numerical simulations. The analysis of the
waveform reveals the dynamics of the merger and the characteristic parameters of
the system (mass, spin).

Gravitational waves interact weakly with matter so they can be detected from
very distant sources. This advantage is also a main drawback, because the perturba-
tion that the wave induces in the detector is also exceedingly small. Current gravi-
tational wave detectors operate as interferometers much as the famous Michelson’s
device. When a gravitational wave hits the interferometer it modifies the length of
the arms and therefore the path of the laser beams. When the beams recombine they
are out of phase and produce an interference pattern. The change in the length L of
the arms is of the order of∼hL/2 where h is the amplitude of the wave. This ampli-
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tude is extremely small, and even though the arms of the interferometers are some
km long, the disturbances are a hundredth of the diameter of the proton! Eliminat-
ing all other sources of perturbations (e.g. seismic activity) is indeed a phenomenal
challenge.

Despite the apparently insurmountable difficulties, there are several ground-
based gravitational wave interferometers currently operative, among them the Laser
Interferometer Gravitational-Wave Observatory (LIGO) in the USA,26 Virgo within
the European Gravitational Observatory in Italy,27 and GEO 600 in Germany.28 It
is expected that a couple of positive detections are announced soon. Both LIGO and
Virgo have achieved their design sensitivity goals and upgrades (Advanced LIGO
and Advanced Virgo) are scheduled to start working in the next years. These up-
grades will improve the sensitivity by a factor of about 10. An important feature of
the detection of gravitational waves is that a single detector cannot locate the source.
LIGO itself is in fact two detectors separated by 3000 km. Joint observations with
LIGO and Virgo have a localization accuracy of∼100 deg2 in the sky; a future array
of interferometers may reduce it to ∼1 deg2 (Centrella 2011).

Ground-based interferometers can detect high frequency gravitational waves in
the range ∼1–104 Hz. They are suitable to investigate supernova collapses and
mergers of stellar-mass compact objects (two black holes, a black hole and a neu-
tron star, or two neutron stars). To detect lower frequency signals (1–10−5 Hz) from
mergers of massive black holes or the capture of a stellar-mass black hole by a
massive one, the detectors must be taken to space. The Laser Interferometer Space
Antenna (LISA, recently renamed New Gravitational wave Observatory, NGO) is a
project currently under study by the European Space Agency. LISA is planned to
be an interferometer with arms ∼106 km long formed by three spacecraft in orbit
around the Sun. Similar to LISA is the DECI-Hertz Interferometer Gravitational
wave Observatory (DECIGO), a Japanese space-borne interferometer working be-
tween 0.1 and 10 Hz. If the projects prosper, LISA and DECIGO are to be launched
perhaps in the 2020’s.

To detect even lower frequency (10−7–10−9 Hz) gravitational waves the proposal
is to use observations of millisecond pulsars. This technique is called Pulsar Timing
Array (PTA). Millisecond pulsars have rotational periods (∼1–10 ms) that are very
stable over time. The passage of a gravitational wave between the Earth and the
pulsar will cause a variation in the period that might be measured after long-term
observations. Presently, about 40 ms pulsars are being monitored by a few research
groups. The most likely sources to be detected in the frequency range probed by
PTA are (very) supermassive black holes.

The number of detections we can expect in a given time span is not yet certain.
Next generation ground-based interferometers might detect of the order of tens of
binaries of compact objects per year. Depending on the their final design capability,

26http://www.ligo.caltech.edu/.
27http://www.ego-gw.it/.
28www.geo600.org/.

http://www.ligo.caltech.edu/
http://www.ego-gw.it/
http://www.geo600.org/
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a space-borne interferometer like LISA might detect 1–30 supermassive black hole
mergers and ∼50 events of stellar-mass black hole capture by supermassive black
holes per year, and many more galactic compact binaries (Centrella 2011).
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Chapter 7
Wormholes and Exotic Objects

7.1 Historical Remarks

The first paper on ‘wormhole’ solutions of Einstein’s field equations was published
in 1935 by Einstein himself and Nathan Rosen (Einstein and Rosen 1935). Einstein
and Rosen used the word “bridge” to describe their solution. They were looking for
solutions able to represent physical particles in pure geometrical terms of space-
time. These solutions should be singularity-free, in order to avoid the divergence
problem of particles in classical field theory.

The so-called “Einstein-Rosen bridge” was built through a coordinate change in
the Schwarzschild solution (2.10): u2 = r − 2M (units of G= c = 1). This renders
the metric in the form

ds2 = u2

u2 + 2M
dt2 − 4

(
u2 + 2M

)
du2 + (

u2 + 2M
)
dΩ2. (7.1)

Here the new variable range is (−∞,+∞). The region including the curvature
singularity, r ∈ [0, 2M), is excluded and the range of the variable covers twice
the asymptotically flat region r ∈ [2M,+∞). The whole solution is like two
Schwarzschild black holes cut and pasted at the event horizon. The region near
u= 0 is the “bridge” that connects the two asymptotically flat regions (at u=−∞
and u = +∞). The Einstein-Rosen bridge, however, is not traversable: any parti-
cle moving along u from −∞ to +∞ will experience infinite tidal forces (see, for
instance, Visser 1996).

The expression “wormhole”, used to describe topologically non-trivial space-
time regions was introduced by Misner and Wheeler (1957). Their objective in that
work was to explain all classical physics through geometric concepts. Specifically,
they used the source-free Maxwell equations coupled with General Relativity for-
mulated on a multiple-connected manifold to build classical models of elementary
particles. This was a new attempt to follow Einstein’s ideas of expressing all physi-
cal phenomena in a geometric framework. The result was the so-called “geometro-
dynamics” (Wheeler 1962). The wormholes conceived by Misner and Wheeler,
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264 7 Wormholes and Exotic Objects

however, were doomed to collapse into black holes making geometrodynamics invi-
able. The so-called “topological censorship theorems” (e.g. Visser 1996) imply that
any space-time where the average null energy condition (ANEC) is satisfied cannot
contain traversable wormholes.

The ANEC condition can be stated as follows:

ANEC holds on Γ ⇐⇒
∫
Γ

Tμνk
μkνdλ≥ 0, (7.2)

where Γ is an null curve, kμ is the corresponding tangent vector, and λ is a gen-
eralized affine parametrization of Γ . If the curve is time-like, instead of null, the
condition is called the average weak energy condition (AWEC).

General macroscopic wormhole solutions of Einstein’s field equations that ex-
plicitly violate AWEC were first found by Morris and Thorne (1988). In that pa-
per, the authors narrate the genesis of these solutions, related to the writing of Carl
Sagan’s novel Contact (Sagan 1985). We shall discuss these solutions in what fol-
lows.

7.2 Wormhole Metric

As we have mentioned, a wormhole is a region of space-time with non-trivial topol-
ogy. It has two mouths connected by a throat (see Figs. 7.1 and 7.2). The mouths
are not hidden by event horizons, as in the case of black holes, and, in addition,
there is no singularity to avoid the passage of particles, or travelers, from one side
to the other. Contrary to black holes, wormholes are holes in space-time, i.e. their
existence implies a multiple-connected space-time.

There are many types of wormhole solutions of Einstein’s field equations (see
Visser 1996). Let us consider the static spherically symmetric line element,

ds2 = e2Φ(l)c2dt2 − dl2 − r(l)2dΩ2

where l is a proper radial distance that covers the entire range (−∞,∞). In order
to have a wormhole which is traversable in principle, we need to demand that:

1. Φ(l) be finite everywhere, to be consistent with the absence of event horizons.
2. For the spatial geometry to tend to an appropriate asymptotically flat limit, it

must happen that

lim
r→∞ r(l)/ l = 1

and

lim
r→∞Φ(l)=Φ0 <∞.

The radius of the wormhole is defined by r0 =min{r(l)}, where we can set l = 0.
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Fig. 7.1 Embedding
diagrams of wormholes.
From Misner et al. (1973)

Fig. 7.2 Embedding of a
Lorentzian wormhole

To formulate wormholes which can be traversable in practice, we should intro-
duce additional engineering constraints. Notice that for simplicity we have consid-
ered both asymptotic regions as interchangeable. This is the best choice of coordi-
nates for the study of wormhole geometries because calculations result considerably
simplified. In general, two patches are needed to cover the whole range of l, but this
is not noticed if both asymptotic regions are assumed to be similar. The static line
element is:

ds2 = e2Φ(r)c2dt2 − e2Λ(r)dr2 − r2dΩ2, (7.3)
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where the redshift function Φ and the shape-like function e2Λ characterize the
wormhole topology. They must satisfy:

1. e2Λ ≥ 0 throughout the space-time. This is required to ensure the finiteness of
the proper radial distance defined by dl =±eΛ dr . The ± signs refer to the two
asymptotically flat regions which are connected by the wormhole throat.

2. The precise definition of the wormhole’s throat (minimum radius, rth) entails a
vertical slope of the embedding surface:

lim
r→r+th

dz

dr
= lim
r→r+th

±
√
e2Λ − 1=∞. (7.4)

3. As l → ±∞ (or equivalently, r →∞), e2Λ → 1 and e2Φ → 1. This is the
asymptotic flatness condition on the wormhole space-time.

4. Φ(r) needs to be finite throughout the space-time to ensure the absence of event
horizons and singularities.

5. Finally, the flaring out condition, that asserts that the inverse of the embedding
function r(z) must satisfy d2r/dz2 > 0 at or near the throat. Stated mathemati-
cally,

− Λ′e−2Λ

(1− e−2Λ)2
> 0. (7.5)

This is equivalent to state that r(l) has a minimum.

Static wormhole structures as those described by the above metric require that
the average null energy condition must be violated in the wormhole throat. From the
metric coefficients it can be established that (e.g. Morris and Thorne 1988; Visser
1996):

Gtt +Grr < 0, (7.6)

where Gtt and Grr are the time and radial components of the Einstein tensor.
This constraint can be cast in terms of the energy-momentum tensor of the matter

threading the wormhole. Using the field equations, it reads:

Ttt + Trr < 0, (7.7)

which represents a violation of the null energy condition. This implies also a vio-
lation of the weak energy condition (see Visser 1996 for details). Plainly stated, it
means that the matter threading the wormhole must exert gravitational repulsion in
order to stay stable against collapse.

Although there are known violations of the energy conditions (e.g. the Casimir
effect), it is far from clear at present whether large macroscopic amounts of “exotic
matter” exist in nature. If natural wormholes exist in the universe (e.g. if the original
topology after the Big Bang was multiply connected), then there should be observ-
able electromagnetic signatures of such objects (e.g. Torres et al. 1998b). Currently,
the observational data allow to establish an upper bound on the total amount of ex-
otic matter under the form of wormholes of ∼10−36 g cm−3. The production of this
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kind of matter in the laboratory is completely out of the current technical possibili-
ties, at least in significant macroscopic quantities.

A simple choice of Φ(r) and Λ(r) is (e.g. Morris and Thorne 1988; Hong and
Kim 2006):

Φ(r)= 1

2
ln

(
1− b(r)

r

)
, (7.8)

e2Λ(r) =
(

1− b(r)
r

)−1

, (7.9)

where

b(r)= b(r0)= const= B > 0. (7.10)

The wormhole shape function has a minimum at r = r0, where the exotic matter is
concentrated.

Another possibility is the so-called “absurdly benign” wormhole (Morris and
Thorne 1988):

b(r)= b0

[
1− (r − b0)

a0

]2

, Φ(r)= 0, for b0 ≤ r ≤ b0 + a0, (7.11)

b=Φ = 0, for r ≥ b0 + a0. (7.12)

There is a vast literature on wormhole solutions. The reader is referred to Lobo
(2008) for further readings.

7.3 Detectability

The idea that wormholes can act as gravitational lenses and induce a microlens-
ing signature on a background source was first suggested by Kim and Cho (1994).
Cramer et al. (1995) carried out more detailed analysis of negative mass wormholes
and considered the effects they can produce on background point sources, at non-
cosmological distances. The generalization to a cosmological scenario was carried
out by Torres et al. (1998a), although lensing of point sources was still used. The
first and only bound on the possible existence of negative masses, imposed using
astrophysical databases, was given by Torres et al. (1998b). These authors showed
that the effective gravitational repulsion of light rays from background gamma-ray
emitting AGNs creates two bursts, which are individually asymmetric under time
reversal. Then, Anchordoqui et al. (1999) searched in existent gamma-ray bursts
databases for signatures of wormhole microlensing. Although they detected some
interesting candidates, no conclusive results were obtained. Peculiarly asymmet-
ric gamma-ray bursts (Romero et al. 1999), although highly uncommon, might be
probably explained by more conventional hypothesis, like precessing jets (see, for
instance, Reynoso et al. 2008).
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In the following subsections we shall discuss the physics of gravitational mi-
crolensing of background sources by natural wormholes. We follow the treatment
given by Safonova et al. (2002).

7.3.1 Lensing by a Point Negative Mass

We shall consider lensing by a point negative mass lens, so we can adopt all the
assumptions concurrent with the treatment of the Schwarzschild lens:

• Geometrical optics approximation—the scale over which the gravitational field
changes is much larger than the wavelength of the light being deflected.

• Small-angle approximation—the total deflection angle is small. The typical bend-
ing angles involved in gravitational lensing of cosmological interest are less than
<1′; therefore we can describe the lens optics in the paraxial approximation.

• Geometrically-thin lens approximation—the maximum deviation of the ray is
small compared to the length scale on which the gravitational field changes. Al-
though the scattering takes place continuously over the trajectory of the photon,
the appreciable bending occurs only within a distance of the order of the impact
parameter.

We define two planes, the source and the lens plane. These planes, described
by Cartesian coordinate systems (ξ1, ξ2) and (η1, η2), respectively, pass through the
source and deflecting mass and are perpendicular to the optical axis (the straight line
extended from the source plane through the deflecting mass to the observer). Since
the components of the image position and the source positions are much smaller
than the distances to the lens and source planes, we can write the coordinates in
terms of the observed angles. Therefore, the image coordinates can be written as
(θ1, θ2) and those of the source as (β1, β2).

7.3.2 Effective Refractive Index of the Gravitational Field
of a Negative Mass and the Deflection Angle

The “Newtonian” potential of a negative point mass lens is given by

Φ(ξ, z)= G|M|
(b2 + z2)1/2

, (7.13)

where b is the impact parameter of the unperturbed light ray and z is the distance
along the unperturbed light ray from the point of closest approach. Here the potential
is positive defined and approaching zero at infinity. In view of the assumptions stated
above, we can describe light propagation close to the lens in a locally Minkowskian
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space-time perturbed by the positive gravitational potential of the lens to first post-
Newtonian order. In this weak field limit, we describe the metric of a negative mass
body in orthonormal coordinates x0 = ct , x= (xi) by

ds2 ≈
(

1+ 2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
dl2, (7.14)

where dl = |x| denotes the Euclidean arc length. The effect of the space-time cur-
vature on the propagation of light can be expressed in terms of an effective index of
refraction neff, given by

neff = 1− 2

c2
Φ. (7.15)

Thus, the effective speed of light in the field of a negative mass is

veff = c/neff ≈ c+ 2

c
Φ. (7.16)

Because of the increase in the effective speed of light in the gravitational field of
a negative mass, light rays would arrive faster than those following a similar path in
vacuum. This leads to a very interesting effect when compared with the propagation
of a light signal in the gravitational field of a positive mass. In that case, light rays
are delayed relative to propagation in vacuum—the well known Shapiro time delay.
In the case of a negative mass lensing, this effect is replaced by a new one, which is
called by Safonova et al. (2002) time gain.

Defining the deflection angle as the difference of the initial and final ray direction

α ≡ êin − êout, (7.17)

where ê ≡ dx/dl is the unit tangent vector of a ray x(l), we obtain the deflection
angle as the integral along the light path of the gradient of the gravitational potential

α = 2

c2

∫
∇⊥Φdl, (7.18)

where ∇⊥Φ denotes the projection of ∇Φ onto the plane orthogonal to the direction
ê of the ray. We find

∇⊥Φ(b, z)=− G|M|b
(b2 + z2)3/2

. (7.19)

Then, the deflection angle is

α =−4G|M|b
c2b2

. (7.20)

In the case of the negative mass lensing, the term “deflection” has its rightful
meaning—the light is deflected away from the mass, unlike in the positive mass
lensing, where it is bent towards the mass.
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Fig. 7.3 Lensing geometry
of a negative mass. O is the
observer, S is the source, W
is the negative mass lens, I1
is one of the images. β is the
angle between the source and
the lens-position of the
source, θ is the angle between
the source and the
image-position of the image,
and α is the deflection angle.
b is the impact parameter and
Dl , Ds and Dls are angular
diameter distances. Other
quantities are auxiliary

7.3.3 Lensing Geometry and Lens Equation

In Fig. 7.3 we show the lensing geometry for a point-like negative mass. From this
figure and the definition of the deflection angle, we can obtain the relation between
the positions of the source and the image:

(β − θ)Ds =−αDls (7.21)

or

β = θ − Dls

Ds
α. (7.22)

With the deflection angle, we can write the lens equation as

β = θ + 4G|M|
c2ξ

Dls

Ds
= θ + 4G|M|

c2

Dls

DsDl

1

θ
. (7.23)

7.3.4 Einstein Radius and the Formation of Images

A natural angular scale in this problem is given by the quantity

θ2
E =

4G|M|
c2

Dls

DsDl
, (7.24)

which is called the Einstein angle. In the case of a positive point mass lens, this cor-
responds to the angle at which the Einstein ring is formed, happening when source,
lens and observer are perfectly aligned. This does not happen if the mass of the lens
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is negative. There are other differences as well. A typical angular separation of im-
ages is of order 2θE for a positive mass lens. Sources which are closer than about
θE to the optical axis are significantly magnified, whereas sources which are located
well outside the Einstein ring are magnified very little. All this is different with a
negative mass lens, but nonetheless, the Einstein angle remains an useful scale for
the description of the various regimes in the present case.

The Einstein angle corresponds to the Einstein radius in the linear scale (in the
lens plane):

RE = θEDl =
√

4GM

c2

DlsDl

Ds
. (7.25)

In terms of Einstein angle the lens equation takes the form

β = θ + θ
2
E

θ
, (7.26)

which can be solved to obtain two solutions for the image position θ :

θ1,2 = 1

2

(
β ±

√
β2 − 4θ2

E

)
. (7.27)

Unlike in the lensing by positive masses, there are now three distinct regimes here
and, thus, we can classify the lensing phenomenon as follows:

I: β < 2θE There is no real solution for the lens equation. It means that there are
no images when the source is inside twice the Einstein angle.

II: β > 2θE There are two solutions, corresponding to two images both on the same
side of the lens and between the source and the lens. One is always inside the
Einstein angle, the other is always outside it.

III: β = 2θE This is a degenerate case, θ1,2 = θE; two images merge at the Einstein
angular radius, forming the radial arc.

We also obtain two important scales, one is the Einstein angle (θE)—the angular
radius of the radial critical curve, the other is twice the Einstein angle (2θE)—the
angular radius of the caustic. Thus, we have two images, one is always inside the
θE, one is always outside; and as a source approaches the caustic (2θE) from the
positive side, two images coming closer and closer together, and nearer and nearer
the critical curve, thereby brightening. When the source crosses the caustic, the two
images merge on the critical curve (θE) and disappear.

7.3.5 Magnifications

Light deflection not only changes the direction but also the cross section of a bundle
of rays. For an infinitesimally small source, the ratio between the solid angles gives
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the flux amplification due to lensing,

|μ| = dωi
dωs

. (7.28)

For an infinitesimal source at angular position β and image at angular position θ ,
the relation between the two solid angles is determined by the area distortion, given
in turn by the determinant of the Jacobian matrix A of the lens mapping θ #→ β ,

A≡ ∂β
∂θ
. (7.29)

For a point mass lens magnification is given by

μ−1 =
∣∣∣∣
β

θ

dβ

dθ

∣∣∣∣. (7.30)

The image is thus magnified or de-magnified by a factor |μ|. If a source is mapped
into several images, the total amplification is given by the sum of the individual
image magnifications. From the lens equation we find

β

θ
= θ

2 + θ2
E

θ2
,

dβ

dθ
= θ

2 − θ2
E

θ2
. (7.31)

Thus,

μ−1
1,2 =

∣∣∣∣1−
θ4

E

θ4
1,2

∣∣∣∣. (7.32)

The total magnification is

μtot = |μ1| + |μ2| = u2 − 2

u
√
u2 − 4

(7.33)

where u= β/θE.

7.3.6 Microlensing

When the angular separation between the images dθ

dθ =
√
β2 − 4θ2

E (7.34)

is of the order of milliarcsecs, we cannot resolve the two images with existing tele-
scopes and we can only observe the lensing effect through their combined light in-
tensity. This effect is called microlensing. Both the lens and the source are moving
with respect to each other (as well as the observer). Thus, images change their posi-
tion and brightness. Of particular interest are sudden changes in luminosity, which
occur when a compact source crosses a critical curve. For the positive mass lensing
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the situation is quite simple (for a review on the positive mass microlensing and its
applications, see Schneider et al. 1992).

For a negative mass lens the situation is different. We define a dimensionless
minimum impact parameter B0, expressed in terms of the Einstein radius, as the
shortest distance between the path line of the source and the lens. For three different
values of B0 we have three different lensing configurations (see Safonova et al.
2002).

We define the time scale of the microlensing event as the time it takes the source
to move across the Einstein radius, projected onto the source plane, ξ0 = θEDs,

tv = ξ0
V
. (7.35)

The angle β changes with time as

β(t)=
√(

V t

Ds

)2

+ β2
0 . (7.36)

Here the moment t = 0 corresponds to the smallest angular distance β0 between the
lens and the source. Normalizing to θE ,

u(t)=
√(

V t

θEDs

)2

+
(
β0

θE

)2

, (7.37)

where u is a dimensionless impact parameter. Including the time scale tv and defin-
ing

B0 = β0

θE
, (7.38)

we obtain

u(t)=
√
B2

0 +
(
t

tv

)2

. (7.39)

Finally, the total amplification as a function of time is given by

A(t)= u(t)2 − 2

u(t)
√
u(t)2 − 4

. (7.40)

In Fig. 7.4 we show the light curves for the point source for four source trajec-
tories with different minimum impact parameters B0. As can be seen from the light
curves, when the distance from the point mass to the source trajectory is larger than
2θE, the light curve is identical to that of a positive mass lens light curve. However,
when the distance is less than 2θE (or in other terms, B0 ≤ 2.0), the light curve
shows significant differences. Such events are characterized by the asymmetrical
light curves, which occur when a compact source crosses a critical curve. A very
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Fig. 7.4 Light curves for the negative mass lensing of a point source. From the center of the graph
towards the corners the curves correspond to B0 = 2.5, 2.0, 1.5, 0.0. The time scale here is ξ0
divided by the effective transverse velocity of the source. From Safonova et al. (2002)

interesting, eclipse-like, phenomenon occurs here; a zero intensity region (disap-
pearance of images) with an angular radius θ0

θ0 =
√

4θ2
E − β2

0 , (7.41)

or in terms of normalized unit θE,

d=
√

4−B2
0 . (7.42)

7.3.7 Extended Source

Many astrophysical sources appear as extended, and although their size may be
small compared to the relevant length scales of a lensing event, this extension has
an impact on the light curves.

We define the dimensionless source radius, R̃, as

R̃ = ρ

θE
= R

ξ0
, (7.43)
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where ρ andR are the angular and the linear physical size of the source, respectively,
and ξ0 is the length unit in the source plane.

It is convenient to write the lens equation in the scaled scalar form

y = x + 1

x
, (7.44)

where we normalized the coordinates to the Einstein angle:

x = θ

θE
, y = β

θE
. (7.45)

The lens equation can be solved analytically for any source position. The ampli-
fication factor, and thus the total amplification, can be readily calculated for point
sources. However, as we are interested in extended sources, this amplification has
to be integrated over the source, Eq. (7.46), and furthermore, as we want to build
the light curves, the total amplification for an extended source has to be calculated
for many source positions. The amplification A of an extended source with surface
brightness profile I (y) is given by

A=
∫
d2yI (y)A0(y)∫
d2yI (y)

, (7.46)

where A0(y) is the amplification of a point source at position y.
In Fig. 7.5 we show the images of an extended source with a Gaussian brightness

distribution for an effective dimensionless source radius R̃S = 3.0 (frames a to e),
together with the corresponding light curve. Here the source path passes through
the lens (B0 = 0), which lies exactly in the center of each frame. The source’s
extent in the lens plane is greater than the Einstein radius of the lens. Annotated
wedges provide color scale for the images. We notice there that there is an eclipse-
like phenomenon, occurring most notably when most of the source is near or exactly
behind the lens. This is consistent with the light curve (frame f), where there is a
de-magnification.

In Fig. 7.6 we compare light curves for three different radially symmetric source
profiles (uniform, Gaussian and exponential) for two dimensionless source radii
R̃ = R̃gauss

S = R̃expon
S = 0.1 and R̃ = R̃gauss

S = R̃expon
S = 1.0. As a reference curve

we show the light curve of the point source. All curves are made for the impact
parameter B0 = 0. We can see the larger noise in the uniform source curve, since
the source with uniform brightness has extremely sharp edge, whereas Gaussian and
exponential sources are extremely smooth. Though we considered the sources with
the same effective radius, we can see from the plot that for a small source size, the
maximum magnification is reached by the source with exponential profile (upper
panel), which is explained by the fact that this profile has a more narrow central
peak than the Gaussian.
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Fig. 7.5 Image configurations (frames a to e) and a corresponding light curve (frame f) for a
Gaussian source with effective radius R̃S = 3.0, in units of the Einstein angle. The source is mov-
ing from the lower left corner (frame a) to the right upper corner (frame e), passing through the
lens (B0 = 0). The lens is in the center of each frame. Size of each frame is 5 × 5, in the nor-
malized units. Wedges to each frame provide the color scale for the images. Note the eclipse-like
phenomenon, consistent with the incomplete demagnification showed in the light curve (frame f).
From Safonova et al. (2002)
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Fig. 7.6 Light curves for the
point mass source (dashed
line), source with constant
surface brightness (solid),
source with Gaussian
brightness distribution
(dash-dotted) and exponential
brightness distribution
(dotted) for two different
effective dimensionless
source radii, 0.1 (upper
panel) and 1.0 (bottom
panel). From Safonova et al.
(2002)

7.4 Closed Time-Like Curves and Time Travel

Closed time-like curves (CTCs) are worldlines of any physical system in a tem-
porally orientable space-time which, moving always in the future direction, ends
arriving back at some point of its own past. Although solutions of Einstein’s field
equations where CTCs exist are known at least since Gödel’s (1949) original work
on rotating universes, it has been only since the last decade of the 20th century that
physicists have shown a strong and sustained interest on this topic. The renewed
attraction of CTCs and their physical implications stem from the discovery, at the
end of the 1980’s, of traversable wormhole space-times. A wormhole can be im-
mediately transformed into a time machine inducing a time-shift between the two
mouths. This can be made through relativistic motion of the mouths (a Special Rela-
tivity effect) or by exposing one of them to an intense gravitational field (see Morris
et al. 1988 for further details; for the paradoxes of time travel, see Romero and
Torres 2001).
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Any space-time (M, gab) with CTCs is called a chronology-violating space-
time. There are two types of these space-times: those where CTCs exist every-
where (as, for instance, in Gödel space-time), and those where CTCs are confined
within some regions and there exists at least one region free of them. The regions
with CTCs are separated from the “well-behaved” space-time by Cauchy horizons
(wormhole space-times belong to this latter type). Here we shall restrict the discus-
sion to the second type of space-times.

The existence of CTCs and the possibility of backward time travel have been
objected by several scientists championed by Hawking (1992), who proposed the
so-called chronology protection conjecture: the laws of physics are such that the ap-
pearance of CTCs is never possible. The suggested mechanism to enforce chronol-
ogy protection is the back-reaction of vacuum polarization fluctuations: when the
renormalized energy-momentum tensor is fed back to the semi-classical Einstein’s
field equations, the back-reaction accumulates energy in such a way that it may
distort the space-time geometry so strongly as to form a singularity, destroying the
CTC at the very moment of its formation.

It has been argued, however, that quantum gravitational effects would cut the
divergence off saving the CTCs (Kim and Thorne 1991). By other hand, Li et al.
(1993) pointed out that the divergence of the energy-momentum tensor does not
prevent the formation of a CTC but is just a symptom that a full quantum gravity
theory must be applied: singularities, far from being physical entities that can act
upon surrounding objects, are manifestations of the breakdown of the gravitational
theory. In any case, we cannot draw definitive conclusions with the semi-classical
tools at our disposal (see Earman 1995 for additional discussion).

But even if the energy-momentum tensor of vacuum polarization diverges at the
Cauchy horizon it is not necessarily implied that CTCs must be destroyed, since the
equations can be well-behaved in the region inside the horizon (Li et al. 1993). In
particular, wormhole space-times could be stabilized against vacuum fluctuations
introducing reflecting boundaries between the wormhole mouths (Li 1994) or using
several wormholes to create CTCs (Thorne 1992; Visser 1997).

Even Hawking has finally recognized that back-reaction does not necessarily en-
force chronology protection (Cassidy and Hawking 1998). Although the quest for
finding an effective mechanism to avoid CTCs continues, it is probable that the
definitive solution to the problem should wait until a complete theory of quantum
gravity can be formulated. In the meantime, the profound physical consequences of
time travel in General Relativity should be explored in order to push this theory to
its ultimate limits, to the region where the very foundations of the theory must be
revisited.

A different kind of objection to CTC formation is that they allow illogical sit-
uations like the “grandfather” paradox1 which would be expressing that the corre-
sponding solutions of the field equations are “non-physical”. This is a commonplace
and has been conveniently refuted by Earman (1995), among others (see also Nahin

1The grandfather paradox: a time traveler goes to his past and kills his young grandfather then
avoiding his own birth and, consequently, the time travel in which he killed his grandfather.
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1999 and references therein). Grandfather-like paradoxes do not imply illogical sit-
uations. In particular, they do not mean that local determinism does not operate in
chronology-violating space-times because it is always possible to choose a neigh-
borhood of any point of the manifold such that the equations that represent the laws
of physics have appropriate solutions. Past cannot be changed (the space-time man-
ifold is unique) but it can be causally affected from the future, according to General
Relativity. The grandfather paradox, as pointed out by Earman 1995, is just a mani-
festation of the fact that consistency constraints must exist between the local and the
global order of affairs in space-time. This leads directly to the so-called Principle of
Self-Consistency (PSC).

7.4.1 The Principle of Self-Consistency

In space-times with CTCs, past and future are no longer globally distinct. Events on
CTCs should causally influence each other along a time-loop in a self-adjusted, con-
sistent way in order to occur in the real universe. This has been stated by Friedman
et al. (1990) as a general principle of physics:

Principle of Self-Consistency: the only solutions to the laws of physics that occur locally in
the real universe are those which are globally self-consistent.

When applied to the grandfather paradox, the PSC says that the grandfather can-
not be killed (a local action) because in the far future this would generate an in-
consistency with the global world line of the time traveler. Just consistent histories
can develop in the universe. An alternative way to formulate the PSC is to state that
(Earman 1995):

The laws of physics are such that any local solution of their equations that represents a
feature of the real universe must be extensible to a global solution.

The principle is not tautological or merely prescriptive, since it is clear that local
observations can provide information of the global structure of the world: it is stated
that there is a global-to-local order in the universe in such a way that certain local
actions are ruled out by the global properties of the space-time manifold.

If the PSC is neither a tautological statement nor a methodological rule, what is
then its epistemological status? It has been suggested that it could be a basic law
of physics—in the same sense that Einstein’s field equations are laws of physics—
(Earman 1995). This would imply that there is some “new physics” behind the PSC.
On the other hand, Carlini et al. (1995) have proposed, on the basis of some simple
examples, that the PSC could be a consequence of the Principle of Minimal Action.
In this case, no new physics would be involved. Contrary to these opinions, that see
in the PSC a law statement, or at least a consequence of law statements, we suggest
that this principle actually is a metanomological statement, like the Principle of
General Covariance among others (see Bunge 1961 for a detailed discussion on
metanomological statements). This means that the reference class of the PSC is not
formed by physical systems, but by laws of physical systems. The usual laws are
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restrictions to the state space of physical systems. Metanomological statements are
laws of laws, i.e. restrictions on the global network of laws that thread the universe.
The requirement of consistency constraints would then be pointing out the existence
of deeper level super-laws, which enforce the harmony between local and global
affairs in space-time. Just in this sense it is fair to say that “new physics” is implied.

7.4.2 Causal Loops: Self-Existent Objects

Although the PSC eliminates grandfather-like paradoxes from chronology-violating
space-times, other highly perplexing situations remain. The most obscure of these
situations is the possibility of an ontology with self-existent objects (Romero and
Torres 2001). Let us illustrate with an example what we understand by such an
object:

Suppose that, in a space-time where CTCs exist, a time traveler takes a ride on a time
machine carrying a book with her. She goes back to the past, forgets the book in—what will
be—her laboratory, and returns to the future. The book remains then hidden until the time
traveler finds it just before starting her time trip, carrying the book with her.

It is not hard to see that the primordial origin of the book remains a mystery.
Where does the book come from? This puzzle has been previously mentioned in
philosophical literature by Nerlich (1981) and MacBeath (1982). Physicists, instead,
have not paid much attention to it, despite the interesting fact that the described
situation is apparently not excluded by the PSC: the local and global structures of
the loop are perfectly harmonious and there are not causality violations. There is
just a book never created, never printed, but, somehow, existing in space-time. It has
been suggested (Nerlich 1981) that if CTCs exist, then we are committed to accept
an ontology of self-existent objects: they are just out there, trapped in space-time.
There is no sense in asking where they come from. Even energy is conserved if we
admit that the system is not only the present time-slice of the manifold but rather
the two slices connected by the time loop: the energy removed from the present time
(Mbookc

2) is deposited in the past.
The acceptance of such a bizarre ontology, however, proceeds from an incor-

rect application of the PSC. This principle is always discussed within the context of
General Relativity, although actually it should encompass all physical laws. A fully
correct formulation of the PSC should read laws of nature where laws of physics ap-
pears in the formulation given above. What should be demanded is total consistency
and not only consistency in the solutions of Einstein’s field equations. In particular,
when thermodynamics is included in the analysis, the loop of a self-existent ob-
jects becomes inconsistent because of the entropic degradation, that makes the final
and initial states of the object not to match (Romero and Torres 2001). Even more
strange paradoxes, related to human self-reproduction like the amazing Jocasta para-
dox (Harrison 1979), can be shown to be non-consistent when the laws of genetics
are taken into account (see Nahin 1999 and references therein). These considera-
tion, nonetheless, seem not to apply when non-interacting elementary particles are
involved, since the concept of entropy can be formulated only for statistical systems.
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7.4.3 Information Loops and the PSC

Consider the local light cone of a time traveler. There are three, and only three, possi-
ble final destinations for a backwards time trip. The arrival point could be (a) within
the past light cone, (b) on the edge of it, or (c) elsewhere out of the cone. In case (a)
the time traveler can transmit information at a velocity v ≤ c and affect its own
past. Information transmitted in case (b) that propagates at the speed of light, in-
stead, will arrive at the very moment when the time travel started. In case (c), the
information flux can only reach the future of the time traveler. However, even in the
latter case, the past might be affected by an information flux from the future if sev-
eral time machines are available (for instance as in the situation known as a Roman
ring, where there are two wormholes in relative motion). The conclusion, then, is
that whatever the final destiny of the time-traveler is, in principle, she could always
affect her own past. Otherwise stated, chronology-violating space-times generally
admit information loops: they cannot be excluded on the sole basis of the PSC.

Although the PSC does not preclude that within chronology-violating regions in-
formation steaming from the future can affect the past, it at least imposes constraints
on the way this can be done. In fact, any physical process causally triggered by the
backwards information flux must be consistent with the past history of the universe.
This means that if a time traveler goes back to her past and tries, for instance, to
communicate the contents of the theory of Special Relativity to the scientific com-
munity before 1905, she will fail because at her departure it was historically clear
that the first paper on Special Relativity was published by Albert Einstein in June
1905. The details of her failure will depend on the details of her travel and attempt,
in the same way that the details of the failure of a perpetual motion machine depends
on the approach used by the imprudent inventor. All we can say a priori is that the
laws of physics are such that these attempts cannot succeed and information cannot
propagate arbitrarily in space-time. It is precisely because of the PSC that we know
that our past is not significantly affected from the future: we know that until now,
knowledge has been generated by evolutionary processes, i.e. there is small room in
history for information loops. This does not necessarily mean that the same is valid
for the entire space-time.

7.5 White Holes

The analytical extension of the Schwarzschild solution in Kruskal-Szekeres coor-
dinates shows a region that is singular and covered by an horizon but from where
geodesic lines emerge. Such an extension can be interpreted as a time-reversal image
of a black hole: the matter from an expanding cloud began to expand from the hori-
zon. Such space-time regions are known as white holes (Novikov 1964; Ne’eman
1965). White holes cannot result from the collapse of physical objects in the real
Universe, but they could be imagined to be intrinsic features of space-time. A white
hole acts as a source that ejects matter from its event horizon. The sign of the accel-
eration is invariant under time reversal, so both black and white holes attract matter.
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Fig. 7.7 Embedding diagram
representing a white hole

The only potential difference between them is in the behavior at the horizon. White
hole horizons recede from any incoming matter at the local speed of light, in such
a way that the infalling matter never crosses the horizon. The infalling matter is
then scattered and re-emitted at the death of the white hole, receding to infinity after
having come close to the final singular point where the white hole is destroyed. The
total proper time until an infalling object encounters the singular endpoint is the
same as the proper time to be swallowed by a black hole, so the white hole picture
does not say what happens to the infalling matter. In Fig. 7.7 we show an embedding
diagram of a white hole.

The existence of white holes is doubtful since they are unstable. The instability
of white holes results from both classical processes caused by the interaction of the
surrounding matter (Frolov 1974) and from processes of quantum particle creation
in the gravitational field of the holes (Zel’dovich et al. 1974). The accretion of matter
into white holes causes the instability and converts them into black holes. The reader
is referred to Frolov and Novikov (1998) for a detailed discussion. In addition, we
notice that the entropy of a black hole is related to the horizon area in Planck units,
and this is the maximum entropy which a given region can contain. When an object
flies out of a white hole, the area of the horizon always decreases by more than the
maximum possible entropy that can be squeezed into the object, which is a time-
reversed statement of the Bekenstein bound.2 White holes, then, appear to violate
the second law of thermodynamics.

7.6 Topological Black Holes

In four-dimensional General Relativity there are several theorems restricting the
topology of the event horizon of a black hole (Heusler 1996). In the stationary case,
black holes must have a spherical horizon. Toroidal horizons are allowed only for
very short times, while the recently formed black hole (e.g. by a neutron star merger)
evolves towards the final steady configuration of trivial topology. However, in higher
dimensional relativity or in some gravitational theories other than General Relativ-
ity, black holes with non-trivial topologies might exist.

2The Bekenstein bound says that the maximum possible entropy of a black hole is S =A/4, where
A is the two-dimensional area of the black hole’s event horizon in units of the Planck area.
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The Kerr solution in four-dimensional Einstein’s theory, which describes asymp-
totically flat rotating black holes, was generalized to higher-dimensions (D ≥ 5) by
Myers and Perry (1986). The essential difference from the four-dimensional Kerr
solution is that there are several independent rotation planes, whose number N de-
pends on the space-time dimensions as N = [(D − 1)/2], in higher dimensions.
Therefore, this solution is specified by the mass parameter μ and N spin parameters
ai (i = 1, . . . ,N). The forms of the metric in odd and even dimensions are slightly
different.

When the space-time dimension,D, is odd, the metric takes the form (Tomizawa
and Ishihara 2011):

ds2 = dt2 − (
r2 + a2

i

)(
dμ2

i +μ2
i dϕ

2
i

)− μr
2

ΠF

(
dt − aiμ2

i dϕi
)2

− ΠF

Π −μr2
dr2, (7.47)

where the functions F and Π are defined as

F(r,μi)= 1− a2
i μ

2
i

r2 + a2
i

, Π =
N∏
i=1

(
r2 + a2

i

)
(7.48)

and i = 1, . . . ,N and μi have to satisfy the constraint
∑
i μ

2
i = 1.

For D even, the metric is:

ds2 = −dt2 + (
r2 + a2

i

)(
dμ2

i +μ2
i dϕ

2
i

)+ μr
2

ΠF

(
dt − aiμ2

i dϕi
)2

+ ΠF

Π −μr dr
2, (7.49)

where μi satisfies
∑
i μ

2
i + α2 = 1 with the constant satisfying −1 ≤ α ≤ 1. The

ADM mass3 and angular momenta for the i-th rotational plane (x2i−1, x2i ) are given
by

M = (D − 2)ΩD−2

16πG
μ, Ji = ΩD−2

16πG
μai. (7.50)

The horizons exist at the place where grr vanishes, as in the four-dimensional
case. For evenD withD ≥ 6, the location of the horizons is determined by the roots
of the equation

Π −μr = 0. (7.51)

3Roughly speaking, the ADM mass is the total mass-energy contained in a asymptotically flat
space-like region. The ADM mass is a conserved quantity. For a formal definition see Visser (1996,
p. 111).



284 7 Wormholes and Exotic Objects

The left-hand side is a polynomial of order 2N , so that this equation for arbitrary
dimensions would have no general analytic solution.

Since curvature singularities appear at r = 0, the existence of horizons requires
that Eq. (7.51) should have at least one solution for positive r . For positive r the
function Π −μr has only a single local minimum, the value of the mass parameter
μ assumed to be positive.

For odd D with D ≥ 5, the horizons exist at the values of r of the equation

Π −μr2 = 0. (7.52)

The left-hand side is a polynomial of (D − 1)/2 order in l = 2r2, so that in general
forD = 5,7,9 only, the above equation would have analytic solutions. In particular,
for D = 5, an analytic solution can be found as

r2± =
μ− a2

1 − a2
2 ±

√
(μ− a2

1 − a2
2)

2 − 4a2
1a

2
2

2
. (7.53)

Therefore the presence (absence) of the horizon requires the parameters should lie
in the range

μ> 0, |a1| + |a2|

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

>
√
μ no horizon,

=√μ, a1a2 = 0 no horizon,

=√μ, a1a2 �= 0 one degenerate horizon,

<
√
μ two horizons.

(7.54)

For arbitrary D larger than 5, when all of spin parameters ai are non-vanishing, the
functionΠ(l)− 2μl has only a single local minimum at l = l∗, which is determined
from ∂lΠ(l∗)− 2μ= 0.

The vacuum Einstein’s equations in 5-dimensions admit a solution describing
a stationary asymptotically flat spacetime regular on and outside an event horizon
of topology S1 × S2 (Emparan and Reall 2002). This solution describes a rotating
“black ring”. It is an example of a stationary asymptotically flat vacuum solution
with an event horizon of non-spherical topology. There is a range of values for
the mass and angular momentum for which there exist two black ring solutions
as well as a black hole solution. Therefore the uniqueness theorems valid in four
dimensions do not have simple 5-dimensional generalizations. It has been suggested
that increasing the spin of a 5-dimensional black hole beyond a critical value results
in a transition to a black ring, which can have an arbitrarily large angular momentum
for a given mass. To keep a balance against its self-gravitational attractive force by
centrifugal force, the black ring must be rotating along the S1 direction.

The metric of the black ring rotating along the S1 direction can be written in
terms of several convenient coordinate systems. In the C-metric coordinates, the
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metric of the Emparan-Reall solution is given by

ds2 = F(y)
F (x)

(
dt +CR 1+ y

F(y)
dψ

)2

− R2F(x)

(x − y)2
[
G(y)

F (y)
dψ2 + G(x)

F (x)
dϕ2 + dx2

G(x)
+ dy2

G(y)

]
, (7.55)

where the functions F and G are defined by

F(ξ)= 1+ λξ, G(ξ)= (
1− ξ2)(1+ νξ), (7.56)

and the constant C is

C =
√
λ(λ− ν)1+ λ

1− λ. (7.57)

The (x, y) coordinates span the range

−1≤ x ≤ 1, −∞< y ≤−1, (7.58)

and the parameters lie in the range

0< ν ≤ λ < 1. (7.59)

This black ring space-time admits three mutually commuting Killing vectors, sta-
tionary Killing vector field ∂t , and two independent axial Killing vectors ∂ψ , ∂ϕ with
closed integral curves. It turns out that there exists no closed time-like curves in the
domain of outer communication. Three parameters, R, ν and λ, are not independent,
which comes from the requirement for the absence of the conical singularities. To
avoid conical singularities at the ψ -axis (y = −1) and the outer ϕ-axis (x = −1),
the coordinates ψ and ϕ must have a periodicity of

!ϕ =!ψ = 2π

√
1− λ

1− ν . (7.60)

This condition also assures that the space-time is asymptotically flat. However, even
if this condition is satisfied, in general, the space-time still possesses a disk-shaped
conical defect at the inner axis (x = 1) of the black ring. Therefore, the absence of
conical singularities at the inner axis (x = 1) should be required. This imposes the
following constraint to the angular coordinate ϕ:

!ϕ = 2π

√
1+ λ

1+ ν . (7.61)

Hence, combining Eqs. (7.60) and (7.61), it is found that regularity requires that the
parameters must satisfy

λ= 2ν

1+ ν2
. (7.62)
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Fig. 7.8 Illustration of
embedded 5-D black rings

This can be interpreted as an equilibrium (balance) condition for a black ring: the
radius of the ring is dynamically fixed by the balance between the centrifugal and
tensional forces.

Unlike rotating black holes, a rotating black ring space-time has only a single
horizon at y satisfying G(y) = 0, namely y = −1/ν. This solution has two non-
vanishing charges, the mass and angular momentum:

M = 3πR2

4G

λ

1− ν , Jψ := J1 = πR
3

2G

√
λ(λ− ν)(1+ λ)
(1− ν)2 . (7.63)

The SLS is at y = −1/λ where F(y) = 0. Figure 7.8 shows an illustration of em-
bedded black rings.

7.7 Gravastars

A different type of hypothetical objects are Gravitational Vacuum Stars or “gravas-
tars”. Gravastars were first proposed by Mazur and Motolla (2001) as an alternative
to black holes. They are mathematically constructed as compact objects with an inte-
rior de Sitter condensate phase and an exterior Schwarzschild geometry of arbitrary
total massM . These are separated by a phase boundary with a small but finite thick-
ness of fluid with equation of state p =+ρc2, replacing both the Schwarzschild and
de Sitter classical horizons. The interior region has an equation of state p =−ρc2,
in such a way that the energy conditions are violated and the singularity theorems
do not apply. The solution, then, has no singularities and no event horizons. The
system is sustained against collapse by the negative pressure of the vacuum. The
assumption required for this solution to exist is that gravity undergoes a vacuum
rearrangement phase transition in the vicinity of r = rSchw. Recent theoretical work,
however, has shown that gravastars as well as other alternative black hole models
are not stable when they rotate (Cardoso et al. 2008). This might be interpreted as a
“no go theorem” for them.
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Chapter 8
Black Holes and Cosmology

8.1 Overview of Current Cosmology

Modern cosmology results from the application of General Relativity to the universe
as a whole. The so-called Standard Big Bang model is the current dynamical model
that purports to describe the evolution and formation of structure of the universe.
This model is supported by three main pieces of evidence: the increasing redshift of
distant galaxies, the existence and properties of the cosmic microwave background
(CMB) radiation, and the primordial nucleosynthesis. The first is interpreted in the
model as due to the expansion of space-time. The second as the result of photon
escape after the last scattering with charged particles occurred when the temper-
ature of the universe dropped, again due to the expansion, to a level that allowed
the combination of ions and electrons forming atoms. And the third as the effect of
nuclear fusion reactions that occurred during the early phase of expansion; these re-
actions can explain the observed abundances of Hydrogen, Deuterium and Helium
with great precision. The model says nothing about how the expansion started. The
recent observation of a large number of high redshift supernovae (of Type Ia) led
to the assumption that, if the universe is approximately homogeneous and isotropic
(a bold hypothesis), then the current expansion should be accelerated (Reiss et al.
1998; Perlmutter et al. 1999). The Big Bang model based on Einstein’s equations
with a cosmological positive term plus the adoption of cold (i.e. non-relativistic)
dark matter to explain some dynamic features of the rotation of galaxies and grav-
itational lensing is called the ΛCDM Big Bang model. Such a model is not free of
problems (e.g. the value of the cosmological constant predicted by quantum field
theories disagrees with what is observed by 120 order of magnitude) and several
alternatives have been proposed (e.g. Amendola and Tsujikawa 2010).

The assumption of an expanding homogeneous and isotropic space-time leads
to the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric (see, e.g., Weinberg
1972):

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ)2 + sin2 θdϕ2

]
. (8.1)

G.E. Romero, G.S. Vila, Introduction to Black Hole Astrophysics,
Lecture Notes in Physics 876, DOI 10.1007/978-3-642-39596-3_8,
© Springer-Verlag Berlin Heidelberg 2014

289

http://dx.doi.org/10.1007/978-3-642-39596-3_8


290 8 Black Holes and Cosmology

Here, t is the co-moving (with the cosmic fluid) time, a(t) is a scale factor, and k
is a normalized curvature index whose values are 0, +1, or −1 for flat, positively,
and negatively curved spatial sections of the universe. If the cosmic fluid is an ideal
one with the standard energy-momentum tensor Tμν = (P + ρ)uμuν − Pgμν , then
Einstein’s equations can be written as:

3
(
ȧ2 + c2k

) = 8πGρa2

c2
, (8.2)

2aä + ȧ2 + c2k = −8πGPa2

c2
, (8.3)

where the dot indicates a derivative with respect to t . An usual, alternative form of
these equations, called Friedmann’s equations, is:

(
ȧ

a

)2

+ c
2k

a2
= 8πGρ

3c2
, (8.4)

ä

a
+ 1

2

(
ȧ

a

)2

+ c
2k

2a2
= −8πGP

2c2
. (8.5)

We can eliminate ȧ/a and get an equation for the acceleration of the universe:

ä

a
=−4πG

3c2
(ρ + 3P). (8.6)

From this equation we see that if the universe is dominated by non-relativistic matter
(ρ� P ), the universe decelerates:

ä

a
=−4πG

3c2
ρ < 0. (8.7)

In the case of a relativistic gas (P = ρ/3):

ä

a
=−8πG

3c2
ρ < 0, (8.8)

and the deceleration of the expansion is twice the previous value. For a universe
dominated by vacuum energy (P =−ρ, see Sect. 1.5) we obtain:

ä

a
= 16πG

3c2
ρ > 0, (8.9)

i.e., the universe accelerates its expansion.
We can introduce a few useful parameters in the equations above. The first one

is the Hubble parameter H0:

H0 ≡
[
ȧ

a

]

t0

, (8.10)
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where t0 is the local time. Then, with a(t0)= a0, we define:

â(t)≡ a(t)
a0
, (8.11)

which is usually called the “reduced scale factor”. The present-day normalized den-
sities of cold matter, relativistic matter, and vacuum (or “dark”) energy1 are given
by:

Ωi ≡ ρi(a0)

3c2H 2
0 /8πG

, (8.12)

where i =M, R, and Λ, respectively, and the normalization is to the “critical den-
sity” ρc = 3c2H 2

0 /8πG obtained for k = 0 and t = t0 in Eq. (8.4). The total energy
density is:

Ω ≡ΩM +ΩR +ΩΛ = 1. (8.13)

The cosmological case with k =ΩM =ΩR = 0 and Λ> 0 yields:

(
ȧ

a

)2

= c
2Λ

3
, (8.14)

ä

a
+ 1

2

(
ȧ

a

)2

= c
2Λ

2
. (8.15)

The solution of these equations is:

a(t)= constant× exp

[(
c2

3
Λ

)1/2

t

]
, (8.16)

which describes an empty universe in exponential expansion with positive cosmo-
logical constant. Such a model is known as de Sitter universe.

From Eqs. (8.4) and (8.5) we obtain an equation for the local energy conserva-
tion:

∂ρ

∂t
= 3(ρ + P)

(
ȧ

a

)
. (8.17)

In the case of de Sitter space-time, since P =−ρ, the evolution of the energy density
with time is:

ρΛ(t)= ρΛ(t0)= cte. (8.18)

For universes dominated by cold matter (ρ� |P |) and relativistic matter (P = ρ/3),
the solutions of Eq. (8.17) are:

ρM(a) = ρM(a0)â
−3, (8.19)

1The expression “dark energy” is an abuse of language, since strictly speaking “energy” is a prop-
erty, not a kind of matter or field. A more correct expression would be “dark field energy density”.
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ρR(a) = ρR(a0)â
−4. (8.20)

As expected, the energy density of expanding universes with matter decays with the
expansion. Instead, the energy density of a de Sitter universe remains constant since
its value is independent of the number density of particles.

The standard Bing Bang model presents at least three serious problems, called the
flatness problem, the horizon problem, and the monopole problem. The first problem
is to explain why the density parameter Ω is so close to 1. The second problem is
related to the following puzzle: why the universe is so homogeneous and isotropic at
large scale, since distant regions are completely isolated from each other? The third
problem concerns the production of monopoles in the early universe, predicted by
grand unified theories, and not observed today. In the early 1980s it was proposed
that a brief and accelerated expansion phase by a factor ∼1050 in the very early
universe might solve these problems (Starobinsky 1980, 1982, Guth 1981). Models
based on this assumption are called inflationary models (Linde 1990).

Inflationary models are obtained introducing a scalar field ϕ with a Lagrangian
of the type

L= 1

2
gμν∇μϕ∇νϕ − V (ϕ). (8.21)

The corresponding energy-momentum tensor for ϕ is

Tμν =∇μϕ∇νϕ − 1

2
gμν∇αϕ∇αϕ − gμνV (ϕ). (8.22)

The associated energy density and pressure are

ρϕ = Tμνuμuν = ϕ̇
2

2
+ V (ϕ), (8.23)

Pϕ = Tii
gii
= ϕ̇

2

2
− V (ϕ). (8.24)

During the inflation ϕ̇ ≈ 0 and ρ ≈ V (ϕ), and the scalar field potential is taken to
be positive. This field is usually known as the inflaton. Friedmann’s equations for
the inflaton era are:

(
ȧ

a

)2

+ c
2k

a2
= 8πG

3c2

[
ϕ̇2

2
+ V (ϕ)

]
, (8.25)

ä

a
+ 1

2

(
ȧ

a

)2

+ c
2k

2a2
= −8πG

2c2

[
ϕ̇2

2
− V (ϕ)

]
. (8.26)

Eliminating ȧ/a, we get:

ä

a
=−8πG

3c2

[
ϕ̇2 − V (ϕ)]. (8.27)
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Fig. 8.1 A possible form for
the potential of the scalar
field responsible for the
inflationary evolution of the
scale factor of the universe

Adopting the slow-roll approximation:

ϕ̇2 � V (ϕ), (8.28)

Eq. (8.27) reduces to

ä

a
≈ 8πG

3c2
V (ϕ). (8.29)

Hence, we see that the scale factor will accelerate, since ä(t) > 0. The evolution of
the scale factor under the inflaton can be obtained from Eq. (8.25), neglecting the ϕ̇
and curvature terms:

(
ȧ

a

)2

≈ 8πG

3c2
V (ϕ), (8.30)

from where we get

a(t)= a0 exp(ζ t), ζ =
√

8πG

3c2
V (ϕ), (8.31)

i.e. the scale factor undergoes an exponential expansion.
The inflaton obeys a Klein-Gordon equation:

ϕ̈ + 3Hϕ̇ + dV
dϕ

= 0, (8.32)

where H = ȧ/a. A specific inflationary model is characterized by the form of the
potential V . An illustrative form is

V (ϕ)= λ(ϕ2 − σ 2)2
, (8.33)

where λ and σ are constants. This potential is represented in Fig. 8.1. Since at V (0)
the potential is out of a minimum, the scalar field starts to increase. At first the rate
of increment is slow, but it grows as the field goes to the minimum of the potential
at ϕ = σ . There the field oscillates dissipating energy that goes to re-heating the
universe, that was cooled down during the expansion period. The expansion sets
up at t ≈ 10−34 s and is damped at around 10−32 s. By then, the scale factor has
inflated by a factor of 1050. This picture is oversimplified since the potential actually
should change with the temperature as well, i.e. V = V (ϕ, T ) (e.g. Albrecht and
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Steinhardt 1982; Linde 1982); however, it is enough to provide a feeling about how
the inflationary scenario is supposed to solve the main problems of the standard Big
Bang model (although introducing new ones such as the origin and nature of the
inflation field).

Inflation can solve the flatness problem because the rapid growth of the universe
suppresses all curvature. Since

|Ω − 1| = |k|
a2H 2

(8.34)

inflation leads to Ω ∼= 1. Inflation, then, predicts a universe extremely close to spa-
tial flatness. In addition, because of inflation, parts of the universe that are now
causally disconnected were once in thermal equilibrium. This solves the horizon
problem. Finally, the inflation also dilutes any relic particles to a point that they
cannot be observed today. This solves the monopole problem.

Despite solving these problems, the inflationary scenario generates its own. In
particular, the nature of the inflaton is not clear, and inflation seems to worsen the
problem of the low entropy in the past required by the presence of irreversible pro-
cess in the present.

8.2 The First Massive Black Holes

Supermassive black holes are found in host galaxies showing a striking correlation
between the black hole mass and galactic properties such as bulge mass and the stel-
lar velocity dispersion of the hot stellar component (Volonteri 2010 and references
therein, see also Sect. 6.4.2). These correlations suggest a co-evolution of both the
galaxies and massive black holes. However, supermassive black holes of ∼109M�
have been found at redshifts larger than 6, i.e. when the universe was about 1 Gyr
old. How these first very massive black hole might have been formed on such a short
timescales? If we consider that a black hole accreting at the Eddington rate increases
its mass as

M(t)≈M0 exp

(
9t

tEdd

)
, (8.35)

we find that black holes with masses in the range of 102–105M� should have existed
as early as 0.5 Gyr, i.e. well within the dark ages, before the re-ionization of the
universe, when galaxies and the first stars were starting to form.

Three main scenarios for early massive black hole formation have been sug-
gested (Volonteri 2010, 2012, and references therein): (1) the direct collapse of the
first generation of stars (Population III stars), (2) black hole formation triggered
by gas dynamical instabilities, and (3) black hole assembling by stellar-dynamical
processes. We shall briefly review these scenarios.
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Fig. 8.2 Plot of metallicity vs. the initial mass of the star, showing the final stellar state. From
Heger et al. (2003). Reproduced by permission of the AAS

8.2.1 Population III Stellar Collapse

The first generation of stars formed out of mini-halos of zero-metallicity gas, at
z ∼ 20–50. These halos resulted from the collapse of the highest peaks of the pri-
mordial density field. Low-metallicity stars of 25–140M� are expected to collapse
directly to black holes with a mass of around a half the mass of the star. This would
produce black holes up to 70M�. Between 140 and 260M� pair instability pro-
duces supernovae that completely disrupt the stars leaving no compact object be-
hind (Bond et al. 1984). If the mass of the Population III stars is above 260M�
direct black hole formation is again possible. Stars lighter than 25M�, on the other
hand, end as neutron stars or white dwarfs. All this is summarized in Fig. 8.2.

The initial mass function of Pop III stars, however, is not known, and it remains
an open problem whether extremely massive stars were present at very early times,
in order to provide seeds for the supermassive black holes observed at z > 6.

8.2.2 Black Holes from Gas-Dynamical Processes

Self-gravitating gas in dark matter haloes can lose angular momentum rapidly via
runaway, global dynamical instabilities, the so-called “bars within bars” mechanism
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(Shlosman et al. 1989). This leads to the rapid build-up of a dense, self-gravitating
core supported by gas pressure and surrounded by a radiation pressure dominated
envelope. The system gradually contracts and is compressed further by subsequent
infall. These conditions lead to such high temperatures in the central region that the
gas cools catastrophically by thermal neutrino emission, causing the formation and
rapid growth of a central black hole (Begelman et al. 2006, 2008).

The growth rate of the black hole for typical conditions in metal-free haloes
with Tvir ∼ 104 K, which are the most likely to be susceptible to runaway infall, is
(Begelman et al. 2006)

Ṁ ∼ 3α
c3

εG

(
M

M%

)2(
v%

c

)4

, (8.36)

where α is the viscosity parameter, v%(t)2 ∼GM%(t)/r%,M is the mass of the black
hole,M% is the mass accumulated around the black hole, and ε ∼ 0.1 is the accretion
efficiency. The black hole will grow at super Eddington rate as long as M% > M .
A system like this, with a radiation supported envelope and an accreting black hole
as a source is known as a “quasi-star” (Begelman et al. 2008).

The interior of the quasi-star has a density profile ρ% ∼ ρ(r/r%)−2, pressure pro-
file P ∼ P%(r/r%)−2, and temperature profile T ∼ T%(r/r%)−1/2. These scalings ap-
ply as long as the radiation pressure exceeds the gas pressure. The ratio of radiation
pressure to gas pressure decreases with decreasing r ,

Prad

Pgas
∼
(
M%

M�

)1/2(
r

r%

)1/2

, (8.37)

implying that Pgas ∼ Prad at small enough radii.
The initial black hole should have a mass< 20M�, but in principle could grow at

a super-Eddington rate until it reachesM ∼ 104–106M�. Rapid growth may be lim-
ited by feedback from the accretion process and disruption of the mass supply by star
formation or halo mergers. Even if super-Eddington growth stops at <103–104M�,
this process would give black holes ample time to attain quasar-size masses by a
redshift of 6, and could also provide the seeds for the massive black holes seen in
the local universe.

8.2.3 Black Holes by Stellar-Dynamical Processes

The gas fragmentation and formation of low-mass stars after the first generation of
Pop III stars provide an alternative channel for the formation of the first massive
black holes in the universe. According to this view (Devecchi and Volonteri 2009),
the high redshift black hole seeds form as a result of multiple successive instabilities
that occur in low-metallicity (Z ∼ 10−5Z�) proto-galaxies. In relatively massive
halos after the very first stars in the universe have completed their evolution, the
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second generation of stars form efficiently only in the very inner core of the proto-
galaxy. There, very compact stellar clusters form. The typical star cluster masses are
of the order of 105M� and the typical half mass radii of ∼0.1 pc. A large fraction
of these very dense clusters undergo core collapse before stars are able to complete
stellar evolution. Runaway star-star collisions eventually lead to the formation of a
very massive star, leaving behind a massive black hole remnant. Clusters unstable
to runaway collisions are always the first, less massive ones that form. As the metal-
licity of the universe increases, the critical density for fragmentation decreases and
stars start to form in the entire proto-galactic disk so that accretion of gas in the
center is no longer efficient and the core collapse timescale increases. Typically a
fraction ∼0.05 of the proto-galaxies at z ∼ 10–20 are expected to host black hole
seeds, with masses in the rangeM ∼ 1000–2000M�, allowing black hole growth by
accretion during the quasar epoch, so at z∼ 6 supermassive (∼109M�) black holes
can exist in galaxies.

8.3 Black Holes and Re-ionization

When the universe expanded, the primordial plasma cooled down until combination
of ions and electrons was possible. The CMB radiation could then escape and the
“dark ages” of the universe started ∼3.8× 105 years after the Big Bang. This phase
of the universe, now filled with neutral hydrogen, lasted for ∼109 years, when the
complex process of re-ionization of the intergalactic medium (IGM) was complete
(see, for instance, Loeb 2010, for a review).

It is usually thought that most of the re-ionization was caused by the ultraviolet
radiation from massive stars formed in the first generations of galaxies. It is un-
certain, however, what fraction of ionizing ultraviolet photons could escape from
primitive galaxies to produce and maintain the ionization far from galaxies in low-
density regions of the IGM. Observations with the Hubble Space Telescope suggest
that the rest-frame ultraviolet radiation from the most distant galaxies detected so
far at the heart of the dark ages is not enough to heat and ionize the IGM over large
volumes of space. Mirabel et al. (2011) have proposed that X-rays from accreting
black holes in binary systems might have played a major role in the re-ionization of
the universe, since the X-rays have a longer mean free path than ultraviolet photons.

Recent hydrodynamic simulations of the formation of the first generations of
stars show that a substantial fraction of stars in primordial galaxies formed as bina-
ries with typical masses of tens of solar masses (e.g. Krumholz et al. 2009). Models
of single stars with very low metal content and initial masses of a few tens of solar
masses show that they collapse directly with no energetic natal kicks, and end as
black holes (e.g. Heger et al. 2003). It is then expected that the fraction of black
holes to neutron stars and the fraction of black hole binaries to solitary black holes,
should increase with redshift. That is, the rate of formation of bright BH-HMXBs
was likely much larger in the early universe than at present.

The energy output from one of those BH-HMXBs during its whole lifetime can
be more than 1054 erg (i.e. orders of magnitude larger than the energy from a typical
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core collapse supernova). In addition, an accreting black hole in a high-mass binary
emits a total number of ionizing photons that is comparable to its progenitor star,
but one X-ray photon emitted by an accreting black hole may cause the ionization
of several tens of hydrogen atoms in a fully neutral medium.

The most important effect of BH-HMXBs in the early universe is the heating of
the IGM to temperatures of ∼104 K, which limits the recombination rate of Hy-
drogen and keeps the IGM ionized. An interesting prediction of Mirabel’s et al.
proposal is that the high temperatures achieved through X-ray ionization prevent
the formation of faint galaxies at high redshifts. The total mass of dwarf galaxies
should be ≥109M�.

An additional effect of metallicity in the formation of BH-HMXBs (Mirabel
2010) is to boost the formation of BH-BH binaries as more likely sources of gravi-
tational waves than NS-NS systems (Belczynski et al. 2010).

In this way, black holes seem to have played a major role in shaping the universe,
as we observe it today.

8.4 The Future of Black Holes

According to Eq. (3.29), an isolated black hole with M = 10M� would have a life-
time of more than 1066 yr. This is 56 orders of magnitude longer than the age of the
universe.2 However, if the mass of the black hole is small, then it could evaporate
within the Hubble time. A primordial black hole, created by extremely energetic
collisions short after the Big Bang, should have a mass of at least 1015 g in order to
exist today. Less massive black holes must have already evaporated. What happens
when a black hole losses its mass so it cannot sustain an event horizon anymore?
As the black hole evaporates, its temperature raises. When it is cold, it radiates low
energy photons. When the temperature increases, more and more energetic parti-
cles will be emitted. At some point gamma rays would be produced. If there is a
population of primordial black holes, their radiation should contribute to the diffuse
gamma-ray background. This background seems to be dominated by the contribu-
tion of unresolved active galactic nuclei and current observations indicate that if
there were primordial black holes their mass density should be less than 10−8Ω ,
whereΩ is the cosmological density parameter (∼1). After producing gamma rays,
the mini black hole would produce leptons, quarks, and super-symmetric particles,
if they exist. At the end, the black hole would have a quantum size and the final
remnant will depend on the details of how gravity behaves at Planck scales. The
final product might be a stable, microscopic object with a mass close to the Planck
mass. Such particles might contribute to the dark matter present in our galaxy and
in other galaxies and clusters. The cross-section of black hole relics is extremely

2We assume that the universe originated at the Big Bang, although, of course, this needs not to be
necessarily the case.
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small: 10−66 cm2 (Frolov and Novikov 1998), hence they would be basically non-
interacting particles.

A different possibility, advocated by Hawking (1974), is that, as a result of the
evaporation nothing is left behind: all the energy is radiated. This creates a puzzle
about the fate of the information stored in the black hole: is it radiated away during
the black hole lifetime or does it simply disappear from the universe?

Actually, the very question is likely meaningless: information is not a property of
physical systems. Information is a property of languages, and languages are human
constructs. The physical property usually confused with information is entropy. The
reason for the confusion is probably that a same mathematical formalism can be
used to describe both properties. Of course, this does not mean that these quite
different properties are identical. Black holes, as we have seen, have huge entropy. Is
the entropy of the universe decreasing when a black hole evaporates? We think that
the answer is the same one given by Bekenstein and already mentioned: the total
generalized entropy never decreases. The entropy of the universe was increasing
because of the black hole evaporation through a simple process of thermalization.
The disappearance of the horizon is simply the end of such a process. Information is
related to our capability of describing the process through a mathematical language,
not to the process itself.

Independently of the problem of mini black hole relics, it is clear that the fate of
stellar-mass and supermassive black holes is related to fate of the whole universe.
In an ever expanding universe or in an accelerating universe as it seems to be our
actual universe, the fate of the black holes will depend on the acceleration rate.
The local physics of the black hole is related to the cosmic expansion through the
cosmological scale factor a(t). A Schwarzschild black hole embedded in a FLRW
universe can be represented by a generalization of the McVittie metric (e.g. Gao
et al. 2008):

ds2 =
[1− 2GM(t)

a(t)c2r
]2

[1+ 2GM(t)
a(t)c2r

]2 c
2dt2 − a(t)2

[
1+ 2GM(t)

a(t)c2r

]4(
dr2 + r2dΩ2). (8.38)

Assuming that M(t) = M0a(t), with M0 a constant, the above metric can be
used to study the evolution of the black hole as the universe expands. Adopting
an equation of state for the cosmic fluid given by P = ωρc2, with ω constant, for
ω < −1 the universe accelerates its expansion in such a way that the scale factor
diverges in a finite time. This time is known as the Big Rip. If ω =−1.5, then the
Big Rip will occur in 35 Gyr. The event horizon of the black hole and the cosmic
apparent horizon will coincide for some time t < tRip and then the inner region
of the black hole would be visible to observers in the universe. Unfortunately for
curious observers, Schwarzschild black holes surely do not exist in nature, since all
astrophysical bodies have some angular momentum and is reasonable then to expect
that only Kerr black holes exist in the universe. Equation (8.38) does not describe
a cosmological embedded Kerr black hole. Although no detailed calculations exist
for such a case, we can speculate that the observer would be allowed to have a look
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at the second horizon of the Kerr black hole before being ripped apart along with
the rest of the cosmos. A rather dark view for the Doomsday.

In case of ω > −1 the expansion will continue during an infinite time. Black
holes will become more and more isolated. As long as their temperature is higher
than that of the CMB, they will accrete photons and increase their mass. When,
because of the expansion, the CMB temperature falls below that of the black holes,
they will start to evaporate. On the very long run, all black holes will disappear. If
massive particles decay into photons on such long timescales, the final state of the
universe will be that of a dilute photon gas. Cosmic time will cease to make any
sense for such a state of the universe, since whatever exists will be on a null surface.
Without time, there will be nothing else to happen.
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Appendix A
Topology and Manifolds

In this appendix we provide some definitions that might be useful for readers inter-
ested in a more formal approach to General Relativity and black holes. For detailed
treatments we refer to the books of Isham (2005), Frankel (2012), and Nash and Sen
(2011).

A.1 Topology

Topology is the study of those properties of a geometric shape that are unchanged
under continuous deformation. In more technical terms, topology deals with topo-
logical spaces. One of the main aspects of topology is that it allows to make quali-
tative predictions when quantitative ones are impossible or extremely difficult.

A.1.1 Topological Spaces

Let X be any set and T = {Xα} a collection, finite or infinite, of subsets of X. Then
the ordered pair (X,T ) forms a topological space iff:

1. X ∈ T .
2. ∅ ∈ T .
3. Any finite or infinite sub-collection {X1,X2, . . . ,Xn} of the Xα is such that⋃n

1Xi ∈ T .
4. Any finite sub-collection {X1,X2, . . . ,Xn} of the Xα is such that

⋂n
1Xi ∈ T .

The set X is called a topological space and the Xα are called open sets. The
assignation of T to X is said to “give” a topology to X.

A function f mapping from the topological space X onto the topological space
X∗ is continuous if the inverse image of an open set in X∗ is an open set in X.

If a set X has two topologies T 1 = {Xα} and T 2 = {X∗α} such that T 1 ⊃ T 2, we
say that T 1 is stronger than T 2.

G.E. Romero, G.S. Vila, Introduction to Black Hole Astrophysics,
Lecture Notes in Physics 876, DOI 10.1007/978-3-642-39596-3,
© Springer-Verlag Berlin Heidelberg 2014
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A.1.2 Neighborhoods

Given a topology T on X, then N is a neighborhood of a point x ∈ X if N ⊂ X
and there is some Xα ⊂N such that x ∈Xα . Notice that it is not necessary for N to
be an open set. However, all open sets Xα which contain x are neighborhoods of x
since they are contained in themselves. Thus, neighborhoods are more general than
open sets.

A.1.3 Closed Sets

Let T be a topology on X. Then any U ⊂X is closed if the complement of U in X

(Ū =X −U ) is an open set. Since ¯̄U = U then a set is open when its complement
is closed. The sets X and ∅ are open and closed regardless the topology T .

A.1.4 Closure of a Set

Given a set U , there will be in general many closed sets that contain U . Let Fα
be the family of closed sets that contain U . The closure of U is Ũ =⋂

α Fα . The

closure is the smallest closed set that contains U . Notice that ˜̃U = Ũ .

A.1.5 Boundary and Interior

The interior U0 of a set U is the union of all open sets Oα of U : U0 =⋃
α Oα . The

interior of U is the largest open set of U .
The boundary b(U) of a set U is the complement of the interior of U in the

closure of U : b(U)= Ũ −U0. Closed sets always contain their boundaries:

U ∩ b(U)= ∅⇐⇒U is open,

b(U)⊂U ⇐⇒U is closed.

Notice that the sets (a, b), [a, b), (a, b], and [a, b] all have the same boundary:
b= a, b.

A.1.6 Compactness

Given a family of sets {Fα} = F , F is a cover of U if U ⊂⋃
α Fα . If (∀Fα)F (Fα is

an open set) then the cover is called an open cover.
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A setU is compact if for every open covering {Fα}withU ⊂⋃
α Fα there always

exists a finite sub-covering {F1, . . . ,Fn} of U such that
⋃n

1 Fα ⊂U .
As an illustration consider �n. A subset X of �n is compact iff it is closed and

bounded. This means that X must have finite area and volume in n-dimensions.

A.1.7 Connectedness

A set X is connected if it cannot be written as X =X1 ∪X2 where X1 and X2 are
both open sets and X1 ∩X2 = ∅.

A.1.8 Homeomorphisms and Topological Invariants

Let T1 and T2 be two topological spaces. An homeomorphism is a map f from T1
to T2:

f : T1 → T2

such that f is continuous and its inverse map f−1 is also continuous. If there is a
third topological space T3 such that T1 is homeomorphic to T2 and T2 is homeomor-
phic to T3, then T1 is homeomorphic to T3. An homeomorphism defines an equiva-
lence class, that of all spaces that are homeomorphic to a given topological space. If
the homeomorphism f and its inverse f−1 are infinitely differentiable (C∞), then
f is called a diffeomorphism. All diffeomorphisms are homeomorphisms, but the
converse is not always the case.

A topological invariant is a construct that does not change under homeomor-
phisms. They are characteristics of the equivalence class of the homeomorphism.
An example of an invariant is the dimension n of �n.

Homeomorphisms generate equivalence classes whose members are topological
spaces. Instead, homotopies generate classes whose members are continuous maps.
More specifically, let f1 and f2 be two continuous maps between the topological
spaces T1 and T2:

f1 : T1 → T2,

f2 : T1 → T2.

Then f1 is said to be homotopic to f2 if f1 can be deformed into f2. Formally:

F : T1 × [0,1]→ T2, F continuous

and

F(x,0)= T1(x),
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F(x,1)= T2(x).

This means that as the real variable t changes continuously from 0 to 1 in the
interval [0,1] the map f1 is deformed continuously into the map f2. Homotopy is
an equivalence relation that divides the space of continuous maps from T1 to T2 into
equivalent classes. These homotopy equivalent classes are topological invariants of
the pair of spaces T1 and T2.

Homotopy can be used to classify topological spaces. If we identify one of the
topological spaces with the n-dimensional sphere Sn, then the space of continuous
maps from Sn to T , C(Sn,T ), can be divided into equivalence classes according to
the topological space T . The equivalent classes of C(Sn,T ) have a group structure
and form the homotopy group Πn(T ).

It is rather straightforward to show that both compactness and connectedness are
topological invariants (Nash and Sen 2011).

A.2 Manifolds

Whereas topology is the natural mathematical framework to study continuity, differ-
ential geometry is a natural framework to study differentiability. Since differentia-
bility implies continuity, but not the other way around, differential geometry is more
specific than topology. The concept of manifold is central to differential geometry.

A.2.1 Manifolds: Definition and Properties

A set M is a differentiable manifold if:

1. M is a topological space.
2. M is equipped with a family of pairs {(Mα,ϕα)}.
3. The Mα’s are a family of open sets that cover M : M =⋃

α Mα . The ϕα’s are
homeomorphisms from Mα to open subsets Oα of �n: ϕα :Mα→Oα .

4. Given Mα and Mβ such that Mα ∩Mβ �= ∅, the map ϕβ ◦ ϕ−1
α from the subset

ϕα(Mα ∩Mβ) of �n to the subset ϕβ(Mα ∩Mβ) of �n is infinitely differentiable
(C∞).

The family {(Mα,ϕα)} is called an atlas. The individual members of the altas
are charts. In informal language we can say that M is a space that can be covered
by patches Mα which are assigned coordinates in �n by ϕα . Within each of these
patches M looks like a subset of the Euclidean space �n. M is not necessarily
globally Euclidean or pseudo-Euclidean. If two patches overlap, then in Mα ∩Mβ
there are two assignations of coordinates, which can be transformed smoothly into
each other. The dimension of the manifold M is the dimension n of the space �n.

A manifoldM is said to be Hausdorff if for any two distinct elements x ∈M and
y ∈M , there exist Ox ⊂M and Oy ⊂M such that Ox ∩Oy = ∅.
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A given topological spaceM is said to be metric if the open sent are provided by
a binary function d(x, y) such that:

1. d(x, y)≥ 0.
2. d(x, y)= 0 iff x = y.
3. If z ∈M , then d(x, y)+ d(y, z)= d(x, z).

An important property of manifolds is their orientability. Given a manifold M
whose atlas is {(Mα,ϕα)}, M is orientable if det(ϕβ ◦ ϕ−1

α ) > 0 for all Mα and Mβ
such that Mα ∩Mβ �= ∅. The manifold is orientable if one can define a preferred
direction unambiguously.

A.2.2 Fiber Bundles

A fiber bundle is a topological space that is locally, but not necessarily globally
the product of two spaces. All spaces that are globally products are called trivial
bundles. Fiber bundles can be defined upon many spaces of use in physics and, in
particular, in gravitation, where, as we shall see, the tangent spaces to a manifold
form a bundle.

Formally, a collection (E,Π,F,G,X) is called a fiber bundle iff:

1. E is a topological space, usually called the total space.
2. X is a topological space, usually called the base space.
3. F is a topological space, usually called the fibre.
4. Π is an application Π :E→X of E onto X, called the projection.
5. G is a group of homeomorphisms on the fiber F .
6. There is a set of open coordinate neighborhoods {Uα} covering X, which reflects

the local triviality of E. Specifically, with each Uα there is a given homeomor-
phism such that:

ϕα :Π−1(Uα)→Uα × F, (A.1)

and

Πϕ−1
α (x,f )= x, with x ∈Uα, f ∈ F. (A.2)

Let us consider a transformation of a local coordinate set {ϕα,Uα} to another set
{ϕβ,Uβ}. Let us suppose that Uα ∩Uβ �= ∅. Then gαβ(x)= ϕα ◦ϕ−1

β is a continuous
invertible map of the form

gαβ(x) : (Uα ∩Uβ)× F → (Uα ∩Uβ)× F. (A.3)

The function gαβ(x) is a homeomorphism of the fiber F , called the transition func-
tion. The set of all these homeomorphisms for all choices of {ϕα,Uα} form the group
G. This group is called the structure group of the fiber bundle E.

Perhaps the simplest illustration of a fiber bundle is a Möbius strip. Such a space
is illustrated in Fig. A.1. Here, the total space E is the whole Möbius strip. The
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Fig. A.1 Simple example of
a fiber bundle: the Möbius
strip. See the text for
explanation

base space X is the projection onto �2. The fiber F is a line segment on the strip
obtained from a point of x ∈X by Π−1(x). To an open set Uα of X corresponds a
set of fibers on E. The functions ϕα transforms Π−1(Uα) into the product Uα × F .
We see, then, that whereas a manifold is locally like �n a fiber bundle is locally like
a product of topological spaces.

Manifolds and fiber bundles are related since we can define a fiber bundle formed
by all tangent spaces to a given manifold. Specifically, for each manifoldM there is
a fiber bundle T (M) (called tangent bundle) given by:

T (M)=
⋃
p∈M

Tp(M). (A.4)

The base space of the fiber bundle is M , the fiber at any point p of M is the
tangent space Tp(M), and the projection is defined by:

Π : T (M)→M, (A.5)

and

V ∈ Tp(M)→ p. (A.6)

The fiber Tp(M) at p is a vector space of dimension n, equal to the dimension of
the manifold. Let now p ∈Uα ⊂M , then

ϕα :Π−1(Uα)→Uα ×�n, (A.7)

and

V→ (
p,ai(p)

)
, (A.8)

where ai(p) is a coordinate assignation to p. The group structure is given by the
group of invertible n× n matrices.

The main role of the tangent bundle is to provide a domain and range for the
derivative of a smooth function. Namely, if f :M→M ′ is a smooth function, with
M and M ′ smooth manifolds, its derivative is also a smooth function.
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Appendix B
Selected and Annotated Bibliography

The following bibliography intends to be merely orientative and by no way is com-
plete. It reflects the authors’ taste and contains some of those books we most fre-
quently resort to in our library.

B.1 Books on General Relativity

• Gravitation, by C.W. Misner, K.S. Thorne and J.A. Wheeler, W.H. Freeman &
Co., New York, 1973.
Complete and detailed. Part VII is devoted to gravitational collapse and black
holes.

• General Relativity, by R.M. Wald, The University of Chicago Press, Chicago,
1984.
A modern introduction to General Relativity with emphasis on global techniques.

• The Large Structure of Space-Time, by S.W. Hawking and G.F.R. Ellis, Cam-
bridge University Press, Cambridge, 1973.
The classic reference on global techniques in General Relativity.

• Introducing Einstein’s Relativity, by R. D’Inverno, Clarendon Press, Oxford,
1992.
A complete and very useful reference on General Relativity and black holes.

• Space-Time and Geometry, by S. Carroll, Addison Wesley, San Francisco, 2004.
Clear and readable introduction for undergraduate and graduate students.

• Relativity, Second Edition, by W. Rindler, Oxford University Press, Oxford, 2006.
An excellent textbook.

• General Relativity, by M.P. Hobson, G. Efstathiou and A.N. Lasenby, Cambridge
University Press, Cambridge, 2006.
A very clear and complete introduction to mathematical aspects of General Rela-
tivity.

• General Relativity, by N. Straumann, Springer, Berlin, 2004.
Complete, mathematically strong, with several astrophysical applications.
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• Gravity, by J.B. Hartle, Addison Wesley, San Francisco, 2003.
Undergraduate textbook with strong emphasis on the physical interpretations.

• General Relativity and the Einstein’s Equations, by Y. Choquet-Bruhat, Oxford
University Press, Oxford, 2009.
A mathematically sophisticated monograph on General Relativity.

• Introduction to General Relativity, by L. Ryder, Cambridge University Press,
Cambridge, 2009.
Student-friendly and well-illustrated basic textbook.

• General Relativity, by M. Ludvigsen, Cambridge University Press, Cambridge,
1999.
A geometric and abstract presentation of General Relativity.

• Global Aspects in Gravitation and Cosmology, by P.S. Joshi, Clarendon Press,
Oxford, 1993.
A good complement to Hawking and Ellis’ book.

• Numerical Relativity, by T.W. Baumgarte and S.L. Shapiro, Cambridge Univer-
sity Press, Cambridge, 2010.
Essential to the working scientist.

• A Relativist’s Toolkit, by E. Poisson, Cambridge University Press, Cambridge,
2004.
Faithful to the title. It is a must for every relativist.

• Relativity on Curved Manifolds, by F. De Felice and C.J.S. Clarke, Cambridge
University Press, Cambridge, 1990.
An advanced monograph.

• Advanced General Relativity, by J. Stewart, Cambridge University Press, Cam-
bridge, 1991.
Good reference for advanced topics such as spinors and asymptopia.

• Rotating Fields in General Relativity, by J.N. Islam, Cambridge University Press,
Cambridge, 1985.
Monograph fully devoted to axially symmetric solutions of Einstein’s equations.

• An Introduction to the Relativistic Theory of Gravitation, by P. Hajicek, Springer,
Heidelberg, 2008.
Good introductory course.

• Lecture Notes on the General Theory of Relativity, by Ø. Grøn, Springer, Heidel-
berg, 2009.
Short overview of the topic.

• An Introduction to Relativity, by J.V. Narlikar, Cambridge University Press, Cam-
bridge, 2010.
Undergraduate level. It deals with some controversial topics.

• A First Course on General Relativity, Second Edition, by B.F. Schutz, Cambridge
University Press, Cambridge, 2009.
Standard textbook.

• Tensor Relativity and Cosmology, by M. Dalarsson and N. Dalarsson, Elsevier,
Amsterdam, 2005.
An introduction which includes many explicit calculations.

• Gravitation, by T. Padmanabhan, Cambridge University Press, Cambridge, 2010.
Complete, modern, with advanced topics.
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• Relativity: the General Theory, by J.L. Synge, North-Holland Publishing Com-
pany, Amsterdam, 1960.
Excellent book by one of the greatest relativists. Still a unique source on several
topics.

• Gravitation and Spacetime, Second Edition, by H.C. Ohaniam and R. Ruffini,
W.W. Norton & Co., New York, 1994.
The chapter on black holes is particularly good.

• The Theory of Space, Time and Gravitation, Second Revised Edition, by V.A.
Fock, Pergamon Press, Oxford, New York, 1964.
A deep exposition a là Landau.

• The Theory of Relativity, Second Edition, by R.K. Pathria, Pergamon Press, Ox-
ford, 1974.
A nice oldie.

• Space Time Matter, by H. Weyl, Dover, New York, 1952.
The first and still one of the best books on General Relativity (first edition 1918).

• Theory of Relativity, by W. Pauli, Dover, New York, 1958.
A classic (first edition 1921).

• The Mathematical Theory of Relativity, by A.S. Eddington, Cambridge University
Press, Cambridge, 1923.
Classic.

• Relativity, Thermodynamics and Cosmology, by R.C. Tolman, Dover, New York,
1987.
A classic and one of the few books dealing with relativistic thermodynamics.
Originally published in 1934.

• Introduction to the Theory of Relativity, by P.G. Bergmann, Dover, New York,
1976.
A book strongly recommended by Einstein himself. One of the few books dis-
cussing the later field theories developed by Einstein. Originally published in
1942.

• General Theory of Relativity, by P.A.M. Dirac, Princeton University Press,
Princeton, 1996.
The lectures given by Dirac on the topic. Originally published in 1975.

• Principles of Relativity Physics, by J.L. Anderson, Academic Press, New York,
1967.
An excellent book, full of physical insight.

B.2 Books on Black Holes

• Black Holes, by J.-P. Luminet, Cambridge University Press, Cambridge, 1992.
A popular thought-provoking introduction.

• Gravity’s Fatal Attraction, by M. Begelman and M. Rees, Scientific American,
New York, 1998.
Superbly illustrated, conceptually clear.

• Exploring Black Holes, by E.F. Taylor and J.A. Wheeler, Addison Wesley, San
Francisco, 2000.
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A didactic primer.
• Stars and Relativity, by Y.B. Zel’dovich and I.D. Novikov, Dover, New York,

1996.
Originally published in 1971, it was one of the first books to discuss black holes
by then named “frozen stars”.

• Black Holes: the Membrane Paradigm, by K. Thorne, R.H. Price and D.A. Mc-
Donald, Yale University Press, New Haven, 1986.
The main reference on a much debated analogy.

• Black Holes, by D. Raine, E. Thomas, Imperial College Press, London, 2005.
Good, well-written and concise.

• Black Holes and Relativistic Stars, by R.M. Wald (ed.), Chicago University Press,
Chicago, 1998.
An outstanding collection of original papers dedicated to the memory of S. Chan-
drasekhar.

• The Mathematical Theory of Black Holes, by S. Chandrasekhar, Oxford Univer-
sity Press, Oxford, 1983.
There is a lot of material that you will only find in this book, but not recommended
for the beginner.

• Introduction to Black Hole Physics, by P.V. Frolov and A. Zelnikov, Oxford Uni-
versity Press, Oxford, 2011.
Perhaps the best book available on black holes.

• Black Hole Gravito-Hydromagnetics, Second Edition, by B. Punsly, Springer,
Berlin, 2008.
Strongly focused on ergospheric effects and relativistic magnetohydrodynamics.

• Black Holes, White Dwarfs and Neutron Stars, by S.L. Shapiro and S.A. Teukol-
sky, John Wiley & Sons, New York, 1983.
Classic but a bit outdated on some of the astrophysical aspects.

• Black Hole Physics, by V.P. Frolov and I.D. Novikov, Kluwer Academic Publish-
ers, Dordretch, 1998.
As complete as expensive, but if you can afford it very worthy.

• Black Hole Uniqueness Theorems, by M. Heusler, Cambridge University Press,
Cambridge, 1996.
Advanced and unique in its kind.

• Physics and Astrophysics of Neutron Stars and Black Holes, Second Edition, by
R. Giacconi and R. Ruffini, Cambridge Scientific Publishers, Cambridge, 2009.
A rich resource of material on both Physics and Astrophysics of black holes.

B.3 Books on Related Topics in Astrophysics

• High-Energy Radiation from Black Holes, by C.D. Dermer and G. Menon, Prince-
ton University Press, Princeton, 2009.
Mostly devoted to radiative processes.

• Relativistic Astrophysics and Cosmology, by P. Hoyng, Springer, Heidelberg,
2006.
Concise and insightful.
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• Compact Objects in Astrophysics, by M. Camenzind, Springer, Berlin, 2007.
Very complete with many applications.

• MHD Flows in Compact Astrophysical Objects, by V.S. Beskin, Springer, Hei-
delberg, 2010.
Key reference for jets and outflows.

• Active Galactic Nuclei, by J.H. Krolik, Princeton University Press, Princeton,
1999.
Covers both observational and theoretical aspects of AGN.

• The Physics of Extragalactic Radio Sources, by D.S. De Young, The University
of Chicago Press, Chicago, 2002.
Includes a very good discussion of the hydrodynamics of jets.

• Quasars and Active Galactic Nuclei, by A.K. Kembhavy and J.V. Narlikar, Cam-
bridge University Press, Cambridge, 1999.
Highly-recommended as an introduction to the topic.

• High-Energy Astrophysics, Third edition, by M.S. Longair, Cambridge University
Press, Cambridge, 2011.
Outstanding textbook.

• Very High-Energy Cosmic Gamma Radiation, by F.A. Aharonian, World Scien-
tific, New Jersey, 2004.
Broad coverage of gamma-ray astronomy.

• Beams and Jets in Astrophysics, by P.A. Hughes (ed.), Cambridge University
Press, Cambridge, 1991.
Very useful source of information for the researcher.

• Theory of Black Hole Accretion Disk, by M.A. Abramowicz, G. Björnsson and
J.E. Pringle (eds.), Cambridge University Press, Cambridge, 1998.
A menagerie of valuable reviews. We specially recommend those on ADAFs and
stability in black hole binaries.

• Accretion Power in Astrophysics, Second Edition, by J. Frank, A. King and
D. Raine, Cambridge University Press, Cambridge, 1992.
Perhaps the most widely used book on accretion by astrophysicists.

• Accretion, by A. Treves, L. Maraschi and M.A. Abramowicz, World Scientific,
Singapur, 1989.
The subtitle of this book is “A Collection of Influential Papers”. It delivers what
it promises.

• X-ray Binaries, by W.H.G. Lewin, J. van Paradijs and E.P.J. van den Heuvel
(eds.), Cambridge University Press, Cambridge, 1997.
A complete introduction.

• High-Energy Astrophysics, by F. Melia, Princeton University Press, Princeton,
2009.
Discusses black holes in binaries, gamma-ray bursts and supermassive black
holes.

• Relativistic Astrophysics of the Transient Universe, by M.H.P.M. van Putten and
A. Levinson, Cambridge University Press, Cambridge, 2012.
Updated and engaging treatment of many astrophysical manifestations of black
holes.
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Action, 14
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Kaluza, 24

Active galactic nuclei, 227
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unification scheme, 227

ADD braneworld model, 25
Advection-dominated accretion flow, 131
Advection-dominated inflow outflow, 144
Affine connection, 7
Alfvén surface, 166
Alfvén velocity, 166
α-prescription, 119
Anti de Sitter space, 26
Average null energy condition, 264
Average weak energy condition, 264

B
Bianchi identities, 11
Birkhoff’s theorem, 40
Black hole, 32, 33

Born-Infeld, 59
f (R), 64
interiors, 87
intermediate-mass, 82

evidence for, 249
Kerr, 49
Kerr-Newman, 54

magnetosphere, 86
mini, 69, 83, 298
regular, 62
Reissner-Nordström, 53
Schwarzschild, 33
shadow, 253
stellar-mass

evidence for, 232
supermassive, 79

evidence for, 243
thermodynamics, 84

laws, 85
topological, 282

Blandford-Payne mechanism, 190
Blandford-Znajek mechanism, 86, 179
Bondi accretion, 102
Bondi-Hoyle accretion, see Bondi-Hoyle-

Lyttleton accretion
Bondi-Hoyle-Lyttleton accretion, 108
Born-Infeld electrodynamics, 59
Boyer-Lindquist coordinates, 50
Brane, 25
Brans-Dicke theory, see scalar-tensor gravity
Bremsstrahlung, 217
Broad-line region, 228

C
Cauchy problem, 17
Causal curve, 32
Causal future, 32
Causal loops, 280
Causal past, 32
Chandrasekhar limit, 74
Circularization radius, 117
Closed time-like curves, 277
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Comptonization, 151
Confinement, 169
Convection-dominated accretion flow, 145
Cosmic censorship conjecture, 93
Cosmological constant, 13
Covariant derivative, 8
Current-driven instability, 200
Curvature tensor, 9
Cusp velocity, 169
Cylindrical accretion, see Bondi-Hoyle-

Lyttleton accretion

D
Dark stars, 31
De Sitter space-time, 291
Debye length, 162
Dilaton, 25
Disk accretion, see accretion disk
Dissipationless disk, 145

E
Eddington

accretion rate, 107
luminosity, 107
temperature, 107

Einstein angle, 270
Einstein field equations, 9
Einstein tensor, 15
Einstein-Maxwell equations, 58
Einstein-Rosen bridge, 263
Energy-momentum

conservation, 11
quasi-tensor of the gravitational field, 17
tensor, 9

for a perfect fluid, 9
for dust, 11
of the electromagnetic field, 59

Entropy of the gravitational field, 19
Epicyclic frequency, 128
Equivalence principle, 6
Ergosphere, 51
Event, 2
Event horizon, 33, 38

F
Flatness problem, 292
Fluorescence line, 247
Flux function, see stream function
4-velocity, 10
f (R) black holes, 64
f (R)-gravity, 27

Friedmann-Lemaitre-Robertson-Walker
metric, 289

Friedmann’s equations, 290

G
Gamma-ray binaries, 226
Gamma-ray burst, 146, 230

afterglow, 230
prompt emission, 230

Gauge transformation, 20
Grad-Shafranov equation, 168
Gravastars, 286
Gravitational capture, 46, 101
Gravitational radius, 42
Gravitational waves, 19, 255

H
Harmonic coordinates, 17
Hoop stress, 170
Horizon problem, 292
Hoyle-Lyttleton radius, 110
Hydrodynamics equations, 100

I
Impulsive acceleration (of jets), 198
Induction equation, 162
Inflation, 292
Inflaton, 292
Inner horizon, 50
Invariant volume element, 14, 16
Inverse Compton scattering, 208

J
Jets

non-relativistic, 163
relativistic, 173

K
Kaluza-Klein theory, 24
Kelvin-Helmholtz instability, 200
Killing vector, 8
Klein-Nishina regime, 209
Kompaneets equation, 153
Kruskal-Szekeres coordinates, 47

L
Lens equation, 270
Lie derivative, 8
Light cone, 3
Light cylinder, 174
Light-like region, 3
Lorentz factor, 4
Low-hard state, 225
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M-σ correlation, 246
Mach number, 112
Mach-Alfvén number, 166
Magnetic surface, 164
Magnetic tower, 195
Magnetically-dominated accretion flows, 145
Magnetization parameter, 175
Magnetohydrodynamics, 161

ideal, 162
non-relativistic, 162

Magnetosonic speed
fast, 169
slow, 169

Magnetosonic surfaces, 169
Magnetosonic wave, 169
Manifold, 2, 304

pseudo-Riemannian, 5
Riemannian, 5

Mass function, 232
Mass load function, 165
McVittie metric, 299
Membrane Paradigm, 86, 182
Metanomological statements, 279
Metric tensor, 2, 6

Euclidean, 2
Minkowski, 2

Microlensing, 272
Microquasars, 224
Monopole problem, 292

N
Narrow-line region, 228
Neutrino-cooled accretion flows, 146
Newtonian gravitational potential, 9
Non-thermal electromagnetic emission, 206
Null region, see light-like region

O
Orbits, 41

P
Particle horizon, 33
Penrose process, 51
Photomeson production, see photopion

production
Photon-photon annihilation, 217
Photopair production, 211
Photopion production, 212
Photosphere, 45
Population III stars, 295
Principle of self-consistency, 279
Proper time, 3

Proton-proton collisions, 214
Pseudo-Newtonian potentials, 53

Q
Quasi-periodic oscillations, 252
Quasi-star, 296

R
Randall-Sundrum model, 26
Recollimation shock, 203
Reconfinement shock, see recollimation shock
Redshift, 37
Reducible mass, 179
Reverberation mapping, 245
Ricci scalar, 9
Ricci tensor, 9
Riemann tensor, see curvature tensor
Roche lobe overflow, 154

S
Sagittarius A*, 239
Scalar product, 4
Scalar-tensor gravity, 23
Schwarzschild

radius, 37
Shapiro time delay, 269
Singularity, 39, 92
Sonic radius, 103
Space-like region, 3
Space-time, 1
Spherical accretion, see Bondi accretion
Spin paradigm, 191
Spin parameter, 50
Split monopole, 168
Static limit, 51
Stellar collapse, 75
Stellar structure, 73
Stream function, 163
Surface gravity, 44
Synchrotron radiation, 206

T
Tangent vector, 4
Teleparallel gravity, 7
Tetrad, 4
Thomson regime, 209
Time travel, 277
Time-like region, 3
Topology, 301
Torsion, 7
Transfield equation, see Grad-Shafranov

equation
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U
Ultra-luminous X-ray source, 249

V
Vaidya space-time, 79
Viscosity, 117

W
Weak-field approximation, 20

Weyl tensor, 12, 18
White holes, 281
Wind accretion, 114
Wormhole, 263

X
X-ray binary, 142, 223
X-ray transient, 141, 233
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